메뉴 건너뛰기




Volumn 40, Issue 3, 2011, Pages 394-411

Impact of contamination on training and test error rates in statistical clustering

Author keywords

Clustering analysis; Error rate; Generalized k means; Influence function; Principal points; Robustness

Indexed keywords

CLUSTERING ANALYSIS; ERROR RATE; GENERALIZED K-MEANS; INFLUENCE FUNCTION; PRINCIPAL POINTS; ROBUSTNESS;

EID: 79751511557     PISSN: 03610918     EISSN: 15324141     Source Type: Journal    
DOI: 10.1080/03610918.2010.542847     Document Type: Article
Times cited : (8)

References (23)
  • 2
    • 0035729565 scopus 로고    scopus 로고
    • Robust linear discriminant analysis using S-estimators
    • Croux, C., Dehon, C. (2001). Robust linear discriminant analysis using S-estimators. The Canadian Journal of Statistics 29:473-492.
    • (2001) The Canadian Journal of Statistics , vol.29 , pp. 473-492
    • Croux, C.1    Dehon, C.2
  • 3
    • 44649135826 scopus 로고    scopus 로고
    • Classification efficiencies for robust linear discriminant analysis
    • Croux, C., Filzmoser, P., Joossens, K. (2008). Classification efficiencies for robust linear discriminant analysis. Statistica Sinica 18:581-599.
    • (2008) Statistica Sinica , vol.18 , pp. 581-599
    • Croux, C.1    Filzmoser, P.2    Joossens, K.3
  • 5
    • 0000925020 scopus 로고
    • The strong law of large numbers for k-means and best possible nets of Banach valued random variables
    • Cuesta-Albertos, J. A., Matran, C. (1988). The strong law of large numbers for k-means and best possible nets of Banach valued random variables. Probability Theory and Related Fields 78:523-534.
    • (1988) Probability Theory and Related Fields , vol.78 , pp. 523-534
    • Cuesta-Albertos, J.A.1    Matran, C.2
  • 6
    • 0002231562 scopus 로고
    • The notion of breakdown point
    • Bickel, P. J., Doksum, K. A., Hodges, J. L. Jr., eds. Belmont, CA Wadsworth
    • Donoho, D. L., Huber, P. J. (1983). The notion of breakdown point. In: Bickel, P. J., Doksum, K. A., Hodges, J. L. Jr., eds. A Festschrift for Erich L. Lehmann. Belmont, CA: Wadsworth, pp. 157-184.
    • (1983) A Festschrift for Erich L. Lehmann , pp. 157-184
    • Donoho, D.L.1    Huber, P.J.2
  • 7
    • 0002313056 scopus 로고
    • Optimal training sample allocation and asymptotic expansions for error rates in discriminant analysis
    • Dučinskas, K. (1995). Optimal training sample allocation and asymptotic expansions for error rates in discriminant analysis. Acta Applicandae Mathematicae 38:3-11.
    • (1995) Acta Applicandae Mathematicae , vol.38 , pp. 3-11
    • Dučinskas, K.1
  • 8
    • 78751701140 scopus 로고
    • Principal points
    • Flury, B. A. (1990). Principal points. Biometrika 77:33-41.
    • (1990) Biometrika , vol.77 , pp. 33-41
    • Flury, B.A.1
  • 10
    • 18444366492 scopus 로고    scopus 로고
    • A robust method for cluster analysis
    • DOI 10.1214/009053604000000940
    • Gallegos, M. T., Ritter, G. (2005). A robust method for cluster analysis. The Annals of Statistics 33:347-380. (Pubitemid 40653793)
    • (2005) Annals of Statistics , vol.33 , Issue.1 , pp. 347-380
    • Gallegos, M.T.1    Ritter, G.2
  • 14
    • 0001340473 scopus 로고
    • A general qualitative definition of robustness
    • Hampel, F. R. (1971). A general qualitative definition of robustness. The Annals of Statistics 42:1887-1896.
    • (1971) The Annals of Statistics , vol.42 , pp. 1887-1896
    • Hampel, F.R.1
  • 18
    • 0036477333 scopus 로고    scopus 로고
    • Boosting using branching programs
    • DOI 10.1006/jcss.2001.1796, Colt 2000
    • Mansour, Y., McAllester, D. (2002). Boosting using branching programs. Journal of Computer and System Sciences 64:103-112. (Pubitemid 34473698)
    • (2002) Journal of Computer and System Sciences , vol.64 , Issue.1 , pp. 103-112
    • Mansour, Y.1    McAllester, D.2
  • 19
    • 0000963889 scopus 로고
    • Strong consistency of k-means clustering
    • Pollard, D. (1981). Strong consistency of k-means clustering. The Annals of Statistics 9:135-140.
    • (1981) The Annals of Statistics , vol.9 , pp. 135-140
    • Pollard, D.1
  • 20
    • 0000963885 scopus 로고
    • A central limit theorem for k-means clustering
    • Pollard, D. (1982). A central limit theorem for k-means clustering. The Annals of Probability 10:919-926.
    • (1982) The Annals of Probability , vol.10 , pp. 919-926
    • Pollard, D.1
  • 21
    • 34447580251 scopus 로고    scopus 로고
    • A comparative study of the k-means algorithm and the normal mixture model for clustering: Univariate case
    • Qiu, D., Tamhane, A. C. (2007). A comparative study of the k-means algorithm and the normal mixture model for clustering: univariate case. Journal of Statistical Planning and Inference 137:3722-3740.
    • (2007) Journal of Statistical Planning and Inference , vol.137 , pp. 3722-3740
    • Qiu, D.1    Tamhane, A.C.2
  • 22
    • 79751508458 scopus 로고    scopus 로고
    • Preprint of the University of Liege. Available online at
    • Ruwet, C., Haesbroeck, G. (2010). Classification performance of k-means. Preprint of the University of Liege. Available online at: http://orbi.ulg.ac.be/ handle/2268/81354
    • (2010) Classification Performance of K-means
    • Ruwet, C.1    Haesbroeck, G.2
  • 23
    • 0002643871 scopus 로고
    • Clustering criteria and multivariate normal mixtures
    • Symons, M. J. (1981). Clustering criteria and multivariate normal mixtures. Biometrics 37:35-43
    • (1981) Biometrics , vol.37 , pp. 35-43
    • Symons, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.