메뉴 건너뛰기




Volumn 19, Issue 4, 2010, Pages 315-335

Genetic algorithm optimized neural network prediction of the friction factor in a mobile bed channel

Author keywords

Bed particles; Flow depth; Flow velocity; Friction factor

Indexed keywords

BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; DATA MINING; FLOW VELOCITY; FORECASTING; FRICTION; GENETIC ALGORITHMS; NEURAL NETWORKS; TRIBOLOGY;

EID: 79551717505     PISSN: 03341860     EISSN: None     Source Type: Journal    
DOI: 10.1515/JISYS.2010.19.4.315     Document Type: Article
Times cited : (2)

References (35)
  • 2
    • 0003928272 scopus 로고
    • University of Alberta Press, Canada
    • nd Edition, University of Alberta Press, Canada.
    • (1969) nd Edition
    • Blench, T.1
  • 4
    • 0038989243 scopus 로고
    • The present status of research on sediment transport
    • Chien, N. 1956. The Present Status of Research on Sediment Transport, Trans. ASCE, 121, 833-868.
    • (1956) Trans. ASCE , vol.121 , pp. 833-868
    • Chien, N.1
  • 6
    • 0001195725 scopus 로고
    • Hydraulic resistance of alluvial streams
    • Engelund, F. (1966), Hydraulic resistance of alluvial streams, Journal of Hydraulic Division, ASCE, 92(2), 315-326
    • (1966) Journal of Hydraulic Division, ASCE , vol.92 , Issue.2 , pp. 315-326
    • Engelund, F.1
  • 7
    • 0016878348 scopus 로고
    • A sediment transport model for straight alluvial channels
    • Engelund, F. and Fredsoe, J. 1982. A sediment transport model for straight alluvial channels, Nordic Hydrology, 7, 293-306.
    • (1982) Nordic Hydrology , vol.7 , pp. 293-306
    • Engelund, F.1    Fredsoe, J.2
  • 8
    • 69049083805 scopus 로고    scopus 로고
    • Artificial neural network model for prediction of friction factor in Pipe flow
    • Fadare, D.A. and Ofidhem U.I. 2009. Artificial neural network model for prediction of friction factor in Pipe flow, Journal of Applied Sciences Research, 5(6), 662-670.
    • (2009) Journal of Applied Sciences Research , vol.5 , Issue.6 , pp. 662-670
    • Fadare, D.A.1    Ofidhem, U.I.2
  • 10
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • Garson G.D. 1991. Interpreting neural-network connection weights, Artificial Intelligence Expert, 6, 47-51.
    • (1991) Artificial Intelligence Expert , vol.6 , pp. 47-51
    • Garson, G.D.1
  • 11
    • 0037442845 scopus 로고    scopus 로고
    • Review and comparison of methods to study the contribution of variables in artificial neural network models
    • Gevrey M., Dimopoulos I. and Lek S. 2003. Review and comparison of methods to study the contribution of variables in artificial neural network models, Ecological Modelling, 160, 249-264.
    • (2003) Ecological Modelling , vol.160 , pp. 249-264
    • Gevrey, M.1    Dimopoulos, I.2    Lek, S.3
  • 15
    • 72149102136 scopus 로고    scopus 로고
    • Metamodeling approach to predict friction factor in alluvial channel
    • Kumar, B. and Rao, ARK. 2010. Metamodeling approach to predict friction factor in alluvial channel, Computers and Electronics in Agriculture, 70, 144-150.
    • (2010) Computers and Electronics in Agriculture , vol.70 , pp. 144-150
    • Kumar, B.1    Rao, A.R.K.2
  • 19
    • 79551594415 scopus 로고
    • Hydraulic criteria for sand waves
    • Langbein, W. 1942. Hydraulic criteria for sand waves, Transactions AGU, 23, 2, 615-618.
    • (1942) Transactions AGU , vol.23 , Issue.2 , pp. 615-618
    • Langbein, W.1
  • 21
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the blackbox: Under-standing variable contributions in artificial neural networks
    • Olden, J.D. and Jackson, D.A. 2002. Illuminating the "blackbox" : under-standing variable contributions in artificial neural networks, Ecological Modelling, 154, 135-150.
    • (2002) Ecological Modelling , vol.154 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 22
    • 0033105068 scopus 로고    scopus 로고
    • An artificial neural network approach to spatial habitat modeling with inters specific interaction
    • Ozesmi S.L. and Ozesmi U. 1999. An artificial neural network approach to spatial habitat modeling with inters specific interaction, Ecological Modelling, 116, 15-31.
    • (1999) Ecological Modelling , vol.116 , pp. 15-31
    • Ozesmi, S.L.1    Ozesmi, U.2
  • 23
    • 0008386501 scopus 로고
    • Analysis of resistance in fluvial channels
    • Raudkivi, A. J. 1967. Analysis of Resistance in Fluvial Channels, ASCE Journal Hydraulics Division, 93(5), 73-84.
    • (1967) ASCE Journal Hydraulics Division , vol.93 , Issue.5 , pp. 73-84
    • Raudkivi, A.J.1
  • 25
    • 0033578446 scopus 로고    scopus 로고
    • Developing an empirical model of phytoplankton primary production: A neural network case study
    • Scardi M. and Harding L. W. 1999, Developing an empirical model of phytoplankton primary production: a neural network case study, Ecological Modelling, 120, 213-223.
    • (1999) Ecological Modelling , vol.120 , pp. 213-223
    • Scardi, M.1    Harding, L.W.2
  • 27
    • 2042448539 scopus 로고
    • Development of bed roughness in alluvial channels
    • Shen, H. W. 1962. Development of Bed Roughness in Alluvial Channels, ASCE Journal Hydraulics Division, ASCE, 88(3), 45-58.
    • (1962) ASCE Journal Hydraulics Division, ASCE , vol.88 , Issue.3 , pp. 45-58
    • Shen, H.W.1
  • 28
    • 0346981632 scopus 로고
    • Forms of bed roughness in alluvial channels
    • Simons, D. B. and Richardson, E.V. 1963. Forms of Bed Roughness in Alluvial Channels, Transactions ASCE, 128(1), 284-302.
    • (1963) Transactions ASCE , vol.128 , Issue.1 , pp. 284-302
    • Simons, D.B.1    Richardson, E.V.2
  • 30
    • 72149127451 scopus 로고
    • Alluvial channel resistance related to bed form
    • Smith, K.V.H. 1968. Alluvial channel resistance related to bed form. ASCE Journal Hydraulics Division, 94(1), 59-69.
    • (1968) ASCE Journal Hydraulics Division , vol.94 , Issue.1 , pp. 59-69
    • Smith, K.V.H.1
  • 32
    • 0032448045 scopus 로고    scopus 로고
    • An artificial neural network for non-iterative calculation of the friction factor in pipeline flow
    • Walid, H.S. and Shyam, S.S. 1998. An artificial neural network for non-iterative calculation of the friction factor in pipeline flow, Computers and Electronics in Agriculture, 21, 219-28.
    • (1998) Computers and Electronics in Agriculture , vol.21 , pp. 219-228
    • Walid, H.S.1    Shyam, S.S.2
  • 34
    • 0036174252 scopus 로고    scopus 로고
    • Open channel flow resistance
    • Yen BC. 2002. Open Channel Flow Resistance, Journal of Hydraulic Engineering, 128(1), 20-39.
    • (2002) Journal of Hydraulic Engineering , vol.128 , Issue.1 , pp. 20-39
    • Yen, B.C.1
  • 35
    • 56049120308 scopus 로고    scopus 로고
    • Application of artificial neural network to predict the friction factor of open channel flow
    • Yuhong, Z. and Wenxin, H. 2008. Application of artificial neural network to predict the friction factor of open channel flow, Communications in Nonlinear Science and Numerical Simulation. 14,2373-2378.
    • (2008) Communications in Nonlinear Science and Numerical Simulation , vol.14 , pp. 2373-2378
    • Yuhong, Z.1    Wenxin, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.