메뉴 건너뛰기




Volumn 4, Issue 1, 2011, Pages 115-132

Random survival forests for high-dimensional data

Author keywords

Forests; Maximal subtree; Minimal depth; Trees; Variable selection; VIMP

Indexed keywords

DECISION TREES; FORESTRY;

EID: 79551713057     PISSN: 19321872     EISSN: 19321864     Source Type: Journal    
DOI: 10.1002/sam.10103     Document Type: Article
Times cited : (151)

References (32)
  • 1
    • 0036956225 scopus 로고    scopus 로고
    • Partial least squares proportional hazard regression for application to DNA microarray data
    • D. Nguyen and D. M. Rocke, Partial least squares proportional hazard regression for application to DNA microarray data, Bioinformatics 18 (2002), 1625-1632.
    • (2002) Bioinformatics , vol.18 , pp. 1625-1632
    • Nguyen, D.1    Rocke, D.M.2
  • 2
    • 12744266814 scopus 로고    scopus 로고
    • Partial Cox regression analysis for high-dimensional microarray gene expression data
    • H. Z. Li and J. Gui, Partial Cox regression analysis for high-dimensional microarray gene expression data, Bioinformatics 20 (2004), 208-215.
    • (2004) Bioinformatics , vol.20 , pp. 208-215
    • Li, H.Z.1    Gui, J.2
  • 3
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • E. Bair and R. Tibshirani, Semi-supervised methods to predict patient survival from gene expression data, PLoS Biol 2 (2004), 0511-0522.
    • (2004) PLoS Biol , vol.2 , pp. 0511-0522
    • Bair, E.1    Tibshirani, R.2
  • 4
    • 34547849507 scopus 로고    scopus 로고
    • 1-regularization path algorithm for generalized linear models
    • 1-regularization path algorithm for generalized linear models, JRSSB 69 (2007), 659-677.
    • (2007) JRSSB , vol.69 , pp. 659-677
    • Park, M.-Y.1    Hastie, T.2
  • 5
    • 34548151636 scopus 로고    scopus 로고
    • Adaptive Lasso for Cox's proportional hazards model
    • H. H. Zhang and W. Lu, Adaptive Lasso for Cox's proportional hazards model, Biometrika 94 (2007), 691-703.
    • (2007) Biometrika , vol.94 , pp. 691-703
    • Zhang, H.H.1    Lu, W.2
  • 6
    • 19544378196 scopus 로고    scopus 로고
    • Boosting proportional hazards models using smoothing splines, with applications to high-dimensional microarray data
    • H. Li and Y. Luan, Boosting proportional hazards models using smoothing splines, with applications to high-dimensional microarray data, Bioinformatics 21 (2006), 2403-2409.
    • (2006) Bioinformatics , vol.21 , pp. 2403-2409
    • Li, H.1    Luan, Y.2
  • 7
    • 33847292771 scopus 로고    scopus 로고
    • Clustering threshold gradient descent regularization: with applications to microarray studies
    • S. Ma and J. Huang, Clustering threshold gradient descent regularization: with applications to microarray studies, Bioinformatics 23 (2006), 466-472.
    • (2006) Bioinformatics , vol.23 , pp. 466-472
    • Ma, S.1    Huang, J.2
  • 8
    • 33750397113 scopus 로고    scopus 로고
    • Model-based boosting in high-dimensions
    • T. Hothorn and P. Buhlmann, Model-based boosting in high-dimensions, Bioinformatics 22 (2006), 2828-2829.
    • (2006) Bioinformatics , vol.22 , pp. 2828-2829
    • Hothorn, T.1    Buhlmann, P.2
  • 9
    • 39449093646 scopus 로고    scopus 로고
    • Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models
    • ,
    • B. Binder and M. Schumacher, Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models, BMC Bioinform 9 (2008), 14.
    • (2008) BMC Bioinform , vol.9 , pp. 14
    • Binder, B.1    Schumacher, M.2
  • 10
    • 0008562342 scopus 로고    scopus 로고
    • The state of boosting
    • G. Ridgeway, The state of boosting, Comput Sci Stat 31 (1999), 172-181.
    • (1999) Comput Sci Stat , vol.31 , pp. 172-181
    • Ridgeway, G.1
  • 11
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, Random forests, Mach Learn 45 (2001), 5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 12
    • 0003802343 scopus 로고
    • Classification and Regression Trees
    • California, Belmont,
    • L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, California, Belmont, 1984.
    • (1984)
    • Breiman, L.1    Friedman, J.H.2    Olshen, R.A.3    Stone, C.J.4
  • 13
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Mach Learn 26 (1996), 123-140.
    • (1996) Mach Learn , vol.26 , pp. 123-140
    • Breiman, L.1
  • 14
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • L. Breiman, Heuristics of instability and stabilization in model selection, Ann Stat 24 (1996), 2350-2383.
    • (1996) Ann Stat , vol.24 , pp. 2350-2383
    • Breiman, L.1
  • 15
    • 85196087021 scopus 로고    scopus 로고
    • and randomForest 4.5-36. R package, .
    • A. Liaw and M. Wiener randomForest 4.5-36. R package, 2010, .
    • (2010)
    • Liaw, A.1    Wiener, M.2
  • 16
    • 25444453244 scopus 로고    scopus 로고
    • Screening large-scale association study data: exploiting interactions using random forests
    • ,
    • K. L. Lunetta, L. B. Hayward, J. Segal, and P. V. Eerdewegh, Screening large-scale association study data: exploiting interactions using random forests, BMC Genet 5 (2004), 32.
    • (2004) BMC Genet , vol.5 , pp. 32
    • Lunetta, K.L.1    Hayward, L.B.2    Segal, J.3    Eerdewegh, P.V.4
  • 18
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • ,
    • R. Diaz-Uriarte and S. Alvarez de Andres, Gene selection and classification of microarray data using random forest, BMC Bioinform 7 (2006), 3.
    • (2006) BMC Bioinform , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    Alvarez de Andres, S.2
  • 20
    • 41949115461 scopus 로고    scopus 로고
    • Random survival forests for R
    • H. Ishwaran and U. B. Kogalur, Random survival forests for R, Rnews 7/2 (2007), 25-31.
    • (2007) Rnews , vol.7 , pp. 25-31
    • Ishwaran, H.1    Kogalur, U.B.2
  • 21
    • 85196062767 scopus 로고    scopus 로고
    • RandomSurvivalForest: Random Survival Forests. R package version 3.6.3, .
    • H. Ishwaran and U. B. Kogalur, RandomSurvivalForest: Random Survival Forests. R package version 3.6.3, 2010, .
    • (2010)
    • Ishwaran, H.1    Kogalur, U.B.2
  • 23
    • 85020057289 scopus 로고    scopus 로고
    • Variable importance in binary regression trees and forests
    • H. Ishwaran, Variable importance in binary regression trees and forests, Electron J Stat 1 (2007), 519-537.
    • (2007) Electron J Stat , vol.1 , pp. 519-537
    • Ishwaran, H.1
  • 25
    • 85196080645 scopus 로고    scopus 로고
    • Random Forests: some methodological insights, ArXiv e-prints, 0811.3619,
    • R. Genuer, J.-M. Poggi, and C. Tuleau, Random Forests: some methodological insights, ArXiv e-prints, 0811.3619, 2008.
    • (2008)
    • Genuer, R.1    Poggi, J.-M.2    Tuleau, C.3
  • 26
    • 0023942063 scopus 로고
    • Regression trees for censored data
    • M. R. Segal, Regression trees for censored data, Biometrics 44 (1988), 35-47.
    • (1988) Biometrics , vol.44 , pp. 35-47
    • Segal, M.R.1
  • 29
    • 85196093159 scopus 로고    scopus 로고
    • Cox models by likelihood based boosting for a single survival endpoint or competing risks. R package version 1.2-1, 2010,
    • H. Binder Cox models by likelihood based boosting for a single survival endpoint or competing risks. R package version 1.2-1, 2010, .
    • Binder, H.1
  • 32
    • 74349113853 scopus 로고    scopus 로고
    • A novel approach to cancer staging: application to esophageal cancer
    • H. Ishwaran, E. H. Blackstone, C. A. Hansen, and T. W. Rice, A novel approach to cancer staging: application to esophageal cancer, Biostatistics 10 (2009), 603-620.
    • (2009) Biostatistics , vol.10 , pp. 603-620
    • Ishwaran, H.1    Blackstone, E.H.2    Hansen, C.A.3    Rice, T.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.