메뉴 건너뛰기




Volumn 1, Issue , 2007, Pages

Spatial mixture modelling for the joint detection-estimation of brain activity in fMRI

Author keywords

Bayes procedures; Biomedical signal detection; Magnetic resonance imaging

Indexed keywords

BRAIN; COMPUTER SIMULATION; PARAMETER ESTIMATION; SIGNAL DETECTION; STATISTICAL METHODS;

EID: 34547522766     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2007.366682     Document Type: Conference Paper
Times cited : (15)

References (11)
  • 1
    • 27644451565 scopus 로고    scopus 로고
    • Joint detection-estimation of brain activity in functional MRI: A multichannel deconvolution solution
    • Sep
    • S. Makni, P. Ciuciu, J. Idier, and J.-B. Poline, "Joint detection-estimation of brain activity in functional MRI: a multichannel deconvolution solution," IEEE Trans. Signal Processing, vol. 53, no. 9, pp. 3488-3502, Sep. 2005.
    • (2005) IEEE Trans. Signal Processing , vol.53 , Issue.9 , pp. 3488-3502
    • Makni, S.1    Ciuciu, P.2    Idier, J.3    Poline, J.-B.4
  • 2
    • 0025630001 scopus 로고
    • Brain magnetic resonance imaging with contrast dependent on blood oxygenation
    • S. Ogawa, T. Lee, A. Kay, and D. Tank, "Brain magnetic resonance imaging with contrast dependent on blood oxygenation," Proc Natl. Acad. Sci. USA, vol. 87, no. 24, pp. 9868-9872, 1990.
    • (1990) Proc Natl. Acad. Sci. USA , vol.87 , Issue.24 , pp. 9868-9872
    • Ogawa, S.1    Lee, T.2    Kay, A.3    Tank, D.4
  • 3
    • 33947697904 scopus 로고    scopus 로고
    • Bayesian joint detection-estimation of brain activity using MCMC with a Gamma-Gaussian mixture prior model
    • May
    • S. Makni, P. Ciuciu, J. Idier, and J.-B. Poline, "Bayesian joint detection-estimation of brain activity using MCMC with a Gamma-Gaussian mixture prior model," in Proc. 31th Proc. IEEE ICASSP, May 2006, vol. V, pp. 1093-1096.
    • (2006) Proc. 31th Proc. IEEE ICASSP , vol.5 , pp. 1093-1096
    • Makni, S.1    Ciuciu, P.2    Idier, J.3    Poline, J.-B.4
  • 4
    • 0033647016 scopus 로고    scopus 로고
    • Spatial mixture modeling of fMRI data
    • N. Vaever Hartvig and J. Jensen, "Spatial mixture modeling of fMRI data," Hum. Brain Mapp., vol. 11, no. 4, pp. 233-248. 2000.
    • (2000) Hum. Brain Mapp , vol.11 , Issue.4 , pp. 233-248
    • Vaever Hartvig, N.1    Jensen, J.2
  • 5
    • 0142011000 scopus 로고    scopus 로고
    • Assessing brain activity through spatial Bayesian variable selection
    • M. Smith, B. Pütz, D. Auer, and L. Fahrmeir, "Assessing brain activity through spatial Bayesian variable selection," Neuroimage, vol. 20, pp. 802-815, 2003.
    • (2003) Neuroimage , vol.20 , pp. 802-815
    • Smith, M.1    Pütz, B.2    Auer, D.3    Fahrmeir, L.4
  • 6
    • 11844293467 scopus 로고    scopus 로고
    • Mixture models with adaptive spatial regularization for segmentation with an application to fMRI data
    • Jan
    • M. Woolrich, T. Behrens, Ch. Beckmann, and S. Smith, "Mixture models with adaptive spatial regularization for segmentation with an application to fMRI data," IEEE Trans. Med. Imag., vol. 24, no. 1, pp. 1-11, Jan. 2005.
    • (2005) IEEE Trans. Med. Imag , vol.24 , Issue.1 , pp. 1-11
    • Woolrich, M.1    Behrens, T.2    Beckmann, C.3    Smith, S.4
  • 7
    • 33746835024 scopus 로고    scopus 로고
    • Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets
    • Aug
    • B. Thirion, G. Flandin, P. Pinel, A. Roche, P. Ciuciu, and J.-B. Poline, "Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets," Hum. Brain Mapp., vol. 27, no. 8, pp. 678-693, Aug. 2006.
    • (2006) Hum. Brain Mapp , vol.27 , Issue.8 , pp. 678-693
    • Thirion, B.1    Flandin, G.2    Pinel, P.3    Roche, A.4    Ciuciu, P.5    Poline, J.-B.6
  • 8
    • 0035212159 scopus 로고    scopus 로고
    • Temporal autocorrelation in univariate linear modelling of fMRI data
    • Dec
    • M. Woolrich, B. Ripley, M. Brady, and S. Smith, "Temporal autocorrelation in univariate linear modelling of fMRI data," Neuroimage, vol. 14, no. 6, pp. 1370-1386, Dec. 2001.
    • (2001) Neuroimage , vol.14 , Issue.6 , pp. 1370-1386
    • Woolrich, M.1    Ripley, B.2    Brady, M.3    Smith, S.4
  • 9
    • 33645565446 scopus 로고    scopus 로고
    • Estimation of binary Markov random fields using Markov Chain Monte Carlo
    • D. Smith and M. Smith, "Estimation of binary Markov random fields using Markov Chain Monte Carlo," J. Comput. and Graph. Stats., vol. 15, no. 1, pp. 207-227, 2006.
    • (2006) J. Comput. and Graph. Stats , vol.15 , Issue.1 , pp. 207-227
    • Smith, D.1    Smith, M.2
  • 10
    • 0037407297 scopus 로고    scopus 로고
    • Robust Bayesian estimation of the hemodynamic response function in event-related BOLD MRI using basic physiological information
    • May
    • G. Marrelec, H. Benali, P. Ciuciu, M. Pélégrini-Issac, and J.-B. Poline, "Robust Bayesian estimation of the hemodynamic response function in event-related BOLD MRI using basic physiological information," Hum. Brain Mapp., vol. 19, no. 1, pp. 1-17, May 2003.
    • (2003) Hum. Brain Mapp , vol.19 , Issue.1 , pp. 1-17
    • Marrelec, G.1    Benali, H.2    Ciuciu, P.3    Pélégrini-Issac, M.4    Poline, J.-B.5
  • 11
    • 0032398552 scopus 로고    scopus 로고
    • Auxiliary variable methods for Markov chain Monte Carlo with applications
    • June
    • D. M. Higdon, "Auxiliary variable methods for Markov chain Monte Carlo with applications," J. Amer. Statist. Assoc., vol. 93, no. 442, pp. 585-595, June 1998.
    • (1998) J. Amer. Statist. Assoc , vol.93 , Issue.442 , pp. 585-595
    • Higdon, D.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.