-
1
-
-
0001356905
-
Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses application à l'hydrodynamique des fluides parfaits
-
V. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses application à l'hydrodynamique des fluides parfaits, Ann. Inst. Grenoble 16 (1966) 319-361.
-
(1966)
Ann. Inst. Grenoble
, vol.16
, pp. 319-361
-
-
Arnold, V.1
-
3
-
-
77956834067
-
A mathematical model illustrating the theory of turbulence
-
J. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech. 1 (1948) 177-199.
-
(1948)
Adv. Appl. Mech.
, vol.1
, pp. 177-199
-
-
Burgers, J.1
-
4
-
-
12044254491
-
An integrable shallow water equation with peaked solitons
-
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993) 1661-1664.
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 1661-1664
-
-
Camassa, R.1
Holm, D.2
-
5
-
-
0040054065
-
Perfect fluid flows over Rn with asymptotic conditions
-
M. Cantor, Perfect fluid flows over Rn with asymptotic conditions, J. Funct. Anal. 18 (1975) 73-84.
-
(1975)
J. Funct. Anal.
, vol.18
, pp. 73-84
-
-
Cantor, M.1
-
6
-
-
0034415062
-
Existence of permanent and breaking waves for a shallow water equation: A geometric approach
-
A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier 50 (2000) 321-362.
-
(2000)
Ann. Inst. Fourier
, vol.50
, pp. 321-362
-
-
Constantin, A.1
-
7
-
-
0242350978
-
Geodesic flow on the diffeomorphism group of the circle
-
DOI 10.1007/s00014-003-0785-6
-
A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv. 78 (2003) 787-804. (Pubitemid 37358018)
-
(2003)
Commentarii Mathematici Helvetici
, vol.78
, Issue.4
, pp. 787-804
-
-
Constantin, A.1
Kolev, B.2
-
8
-
-
84867921767
-
Integrability of invariant metrics on the diffeomorphism group of the circle
-
A. Constantin and B. Kolev, Integrability of invariant metrics on the diffeomorphism group of the circle, J. Nonlinear Sci. 16 (2006) 109-122.
-
(2006)
J. Nonlinear Sci.
, vol.16
, pp. 109-122
-
-
Constantin, A.1
Kolev, B.2
-
9
-
-
0042279206
-
On the geometric approach to the motion of inertial mechanical systems
-
A. Constantin and B. Kolev, On the geometric approach to the motion of inertial mechanical systems, J. Phys. A: Math. Gen. 35 (2002) R51-R79.
-
(2002)
J. Phys. A: Math. Gen.
, vol.35
-
-
Constantin, A.1
Kolev, B.2
-
10
-
-
84990556249
-
A simple one-dimensional model for the threedimensional vorticity equation
-
P. Constantin, P. Lax and A. J. Majda, A simple one-dimensional model for the threedimensional vorticity equation, Comm. Pure Appl. Math. 38 (1985) 715-724 .
-
(1985)
Comm. Pure Appl. Math.
, vol.38
, pp. 715-724
-
-
Constantin, P.1
Lax, P.2
Majda, A.J.3
-
11
-
-
33751328809
-
Integral inequalities for the Hilbert transform applied to a nonlocal transport equation
-
A. Córdoba, D. Córdoba and M. A. Fontelos, Integral inequalities for the Hilbert transform applied to a nonlocal transport equation, J. Math. Pure Appl. 86 (2006) 529-540.
-
(2006)
J. Math. Pure Appl.
, vol.86
, pp. 529-540
-
-
Córdoba, A.1
Córdoba, D.2
Fontelos, M.A.3
-
13
-
-
0006605544
-
On a one-dimensional model for the three-dimensional vorticity equation
-
S. De Gregorio, On a one-dimensional model for the three-dimensional vorticity equation, J. Stat. Phys. 59 (1990) 1251-1263.
-
(1990)
J. Stat. Phys.
, vol.59
, pp. 1251-1263
-
-
De Gregorio, S.1
-
14
-
-
0030269759
-
A partial differential equation arising in a 1D model for the 3D vorticity equation
-
S. De Gregorio, A partial differential equation arising in a 1D model for the 3D vorticity equation, Math. Methods Appl. Sci. 19 (1996) 1233-1255.
-
(1996)
Math. Methods Appl. Sci.
, vol.19
, pp. 1233-1255
-
-
De Gregorio, S.1
-
15
-
-
61849127242
-
The Hunter-Saxton equation: A geometric approach
-
J. Lenells, The Hunter-Saxton equation: A geometric approach, SIAM J. Math. Anal. 40 (2008) 266-277.
-
(2008)
SIAM J. Math. Anal.
, vol.40
, pp. 266-277
-
-
Lenells, J.1
-
16
-
-
34547608701
-
The Hunter-Saxton equation describes the geodesic flow on a sphere
-
J. Lenells, The Hunter-Saxton equation describes the geodesic flow on a sphere, J. Geom. Phys. 57 (2007) 2049-2064.
-
(2007)
J. Geom. Phys.
, vol.57
, pp. 2049-2064
-
-
Lenells, J.1
-
17
-
-
56349084704
-
On a generalization of the Constantin-Lax-Majda equation
-
H. Okamoto, T. Sakajo and M. Wunsch, On a generalization of the Constantin-Lax-Majda equation, Nonlinearity 21 (2008) 2447-2461.
-
(2008)
Nonlinearity
, vol.21
, pp. 2447-2461
-
-
Okamoto, H.1
Sakajo, T.2
Wunsch, M.3
-
18
-
-
14544275482
-
On the structure of solutions to the periodic Hunter-Saxton equation
-
Zh. Yin, On the structure of solutions to the periodic Hunter-Saxton equation, SIAM J. Math. Anal. 36 (2004) 272-283.
-
(2004)
SIAM J. Math. Anal.
, vol.36
, pp. 272-283
-
-
Yin, Z.1
|