-
1
-
-
0001356905
-
Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits
-
V. ARNOLD, Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361.
-
(1966)
Ann. Inst. Fourier (Grenoble)
, vol.16
, pp. 319-361
-
-
Arnold, V.1
-
4
-
-
12044254491
-
An integrable shallow water equation with peaked solitons
-
R. CAMASSA and D. HOLM, An integrable shallow water equation with peaked solitons, Phys. Rev. Letters, 71 (1993), 1661-1664.
-
(1993)
Phys. Rev. Letters
, vol.71
, pp. 1661-1664
-
-
Camassa, R.1
Holm, D.2
-
5
-
-
56349110516
-
A new integrable shallow water equation
-
R. CAMASSA and D. HOLM and J. HYMAN, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33.
-
(1994)
Adv. Appl. Mech.
, vol.31
, pp. 1-33
-
-
Camassa, R.1
Holm, D.2
Hyman, J.3
-
6
-
-
0040054065
-
n with asymptotic conditions
-
n with asymptotic conditions, J. Funct. Anal., 18 (1975), 73-84.
-
(1975)
J. Funct. Anal.
, vol.18
, pp. 73-84
-
-
Cantor, M.1
-
7
-
-
0000213450
-
The cauchy problem for the periodic Camassa-Holm equation
-
A. CONSTANTIN, The Cauchy problem for the periodic Camassa-Holm equation, J. Differential Equations, 141 (1997), 218-235.
-
(1997)
J. Differential Equations
, vol.141
, pp. 218-235
-
-
Constantin, A.1
-
8
-
-
0032374820
-
Well-posedness, global existence, and blow-up phenomena for a periodic quasi-linear hyperbolic equation
-
A. CONSTANTIN and J. ESCHER, Well-posedness, global existence, and blow-up phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, pp. 475-504
-
-
Constantin, A.1
Escher, J.2
-
9
-
-
85129402022
-
Global existence and blow-up for a shallow water equation
-
A. CONSTANTIN and J. ESCHER, Global existence and blow-up for a shallow water equation, Annali Sc. Norm. Sup. Pisa, 26 (1998), 303-328,
-
(1998)
Annali Sc. Norm. Sup. Pisa
, vol.26
, pp. 303-328
-
-
Constantin, A.1
Escher, J.2
-
10
-
-
0000985293
-
Wave breaking for nonlinear nonlocal shallow water equations
-
A. CONSTANTIN and J. ESCHER, Wave breaking for nonlinear nonlocal shallow water equations, Acta Mathematica, 181 (1998), 229-243.
-
(1998)
Acta Mathematica
, vol.181
, pp. 229-243
-
-
Constantin, A.1
Escher, J.2
-
11
-
-
0034347295
-
On the blow-up rate and the blow-up set of breaking waves for a shallow water equation
-
A. CONSTANTIN and J. ESCHER, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91.
-
(2000)
Math. Z.
, vol.233
, pp. 75-91
-
-
Constantin, A.1
Escher, J.2
-
16
-
-
0001052255
-
Groups of diffeomorphisms and the notion of an incompressible fluid
-
D. EBIN and J. E. MARSDEN, Groups of diffeomorphisms and the notion of an incompressible fluid, Ann. of Math., 92 (1970), 102-163.
-
(1970)
Ann. of Math.
, vol.92
, pp. 102-163
-
-
Ebin, D.1
Marsden, J.E.2
-
17
-
-
0003346795
-
Measure theory and fine properties of functions
-
Boca Raton, Florida
-
L. EVANS and R. GARIEPY, Measure Theory and Fine Properties of Functions, Studies in Adv. Math., Boca Raton, Florida, 1992.
-
(1992)
Studies in Adv. Math.
-
-
Evans, L.1
Gariepy, R.2
-
18
-
-
49049150360
-
Symplectic structures, their Bäcklund transformation and hereditary symmetries
-
A. S. FOKAS and B. FUCHSSTEINER, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D, 4 (1981), 47-66.
-
(1981)
Physica D
, vol.4
, pp. 47-66
-
-
Fokas, A.S.1
Fuchssteiner, B.2
-
19
-
-
22244482803
-
Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation
-
B. FUCHSSTEINER, Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation, Physica D, 95 (1996), 296-343.
-
(1996)
Physica D
, vol.95
, pp. 296-343
-
-
Fuchssteiner, B.1
-
20
-
-
0003123140
-
Quasi-linear equations of evolution, with applications to partial differential equations
-
Spectral Theory and Differential Equations
-
T. KATO, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations, Springer Lecture Notes in Mathematics, 448 (1975), 25-70.
-
(1975)
Springer Lecture Notes in Mathematics
, vol.448
, pp. 25-70
-
-
Kato, T.1
-
21
-
-
84990553608
-
Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle
-
C. KENIG and G. PONCE and L. VEGA, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
-
(1993)
Comm. Pure Appl. Math.
, vol.46
, pp. 527-620
-
-
Kenig, C.1
Ponce, G.2
Vega, L.3
-
22
-
-
0001524186
-
On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves
-
D. J. KORTEWEG and G. de VRIES, On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves, Phil. Mag., 39 (1895), 422-443.
-
(1895)
Phil. Mag.
, vol.39
, pp. 422-443
-
-
Korteweg, D.J.1
De Vries, G.2
-
23
-
-
0033483085
-
The Camassa-Holm equation as a geodesic flow on the diffeomorphism group
-
S. KOURANBAEVA, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999), 857-868.
-
(1999)
J. Math. Phys.
, vol.40
, pp. 857-868
-
-
Kouranbaeva, S.1
-
25
-
-
0002497535
-
Integrable systems and algebraic curves
-
Global Analysis
-
H. P. MCKEAN, Integrable systems and algebraic curves, Global Analysis, Springer Lecture Notes in Mathematics, 755 (1979), 83-200.
-
(1979)
Springer Lecture Notes in Mathematics
, vol.755
, pp. 83-200
-
-
McKean, H.P.1
-
26
-
-
0003252211
-
Morse theory
-
Princeton University Press
-
J. MILNOR, Morse Theory, Ann. Math. Studies 53, Princeton University Press, 1963.
-
(1963)
Ann. Math. Studies
, vol.53
-
-
Milnor, J.1
-
27
-
-
0031989845
-
A shallow water equation as a geodesic flow on the Bott-Virasoro group
-
G. MISIOLEK, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.
-
(1998)
J. Geom. Phys.
, vol.24
, pp. 203-208
-
-
Misiolek, G.1
|