-
1
-
-
1142279665
-
Financial markets analysis by using a probabilistic fuzzy modelling approach
-
J. van den Berg et al., " Financial markets analysis by using a probabilistic fuzzy modelling approach," Int. J. Approx. Reason., vol. 35, no. 3, pp. 291-305, 2004.
-
(2004)
Int. J. Approx. Reason.
, vol.35
, Issue.3
, pp. 291-305
-
-
Berg Den J.Van1
-
2
-
-
0003787146
-
-
Princeton, NJ: Princeton Univ. Press
-
R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton Univ. Press, 1957.
-
(1957)
Dynamic Programming
-
-
Bellman, R.E.1
-
3
-
-
0020970738
-
Neuron-like adaptive elements that can solve difficult learning control problems
-
A. G. Barto et al., " Neuron-like adaptive elements that can solve difficult learning control problems," IEEE Trans. Syst., Man, Cybern., vol. SMC- 13, no. 5, pp. 835-846, 1983.
-
(1983)
IEEE Trans. Syst., Man, Cybern.
, vol.SMC- 13
, Issue.5
, pp. 835-846
-
-
Barto, A.G.1
-
4
-
-
0024646143
-
Learning to control an inverted pendulum using neural networks
-
Apr.
-
C. W. Anderson, "Learning to control an inverted pendulum using neural networks," IEEE Control Syst. Mag., vol. 9, no. 3, pp. 31-37, Apr. 1989.
-
(1989)
IEEE Control Syst. Mag.
, vol.9
, Issue.3
, pp. 31-37
-
-
Anderson, C.W.1
-
5
-
-
0026923465
-
Learning and tuning fuzzy logic controllers through reinforcements
-
Sep.
-
H. R. Berenji and P. Khedkar, " Learning and tuning fuzzy logic controllers through reinforcements," IEEE Trans.NeuralNetw., vol. 3, no. 5, pp. 724- 740, Sep. 1992.
-
(1992)
IEEE Trans.Neural Netw.
, vol.3
, Issue.5
, pp. 724-740
-
-
Berenji, H.R.1
Khedkar, P.2
-
6
-
-
0025842468
-
A self-learning rule-based controller employing approximate reasoning and neural net concept
-
C.-C. Lee, "A self-learning rule-based controller employing approximate reasoning and neural net concept" Int. J. Intell. Syst., vol. 6, no. 1, pp. 71-93, 1991.
-
(1991)
Int. J. Intell. Syst.
, vol.6
, Issue.1
, pp. 71-93
-
-
Lee, C.-C.1
-
7
-
-
0027202835
-
Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems
-
presented at the, San Francisco, CA
-
C.-T. Lin and C. S. G. Lee, " Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems," presented at the IEEE Int. Conf. Fuzzy Syst., San Francisco, CA, 1993.
-
(1993)
IEEE Int. Conf. Fuzzy Syst.
-
-
Lin, C.-T.1
Lee, C.S.G.2
-
8
-
-
0029275364
-
A neural fuzzy control system with structure and parameter learning
-
Mar.
-
C.-T. Lin, "A neural fuzzy control system with structure and parameter learning," Fuzzy Sets Syst., vol. 70, no. 2/3, pp. 183-212, Mar. 1995.
-
(1995)
Fuzzy Sets Syst
, vol.70
, Issue.2-3
, pp. 183-212
-
-
Lin, C.-T.1
-
9
-
-
79551620970
-
Reinforcement learning for fuzzy control with linguistic states
-
Oct.
-
M. H. F. Zarandi et al., " Reinforcement learning for fuzzy control with linguistic states," J. Uncertain Syst., vol. 2, pp. 54-66, Oct. 2008.
-
(2008)
J. Uncertain Syst.
, vol.2
, pp. 54-66
-
-
Zarandi, M.H.F.1
-
10
-
-
0032140718
-
Fuzzy inference system learning by reinforcement methods
-
Aug.
-
L. Jouffe, "Fuzzy inference system learning by reinforcement methods," IEEE Trans. Syst., Man, Cybern., vol. 28, no. 3, pp. 238-255, Aug. 1998.
-
(1998)
IEEE Trans. Syst., Man, Cybern.
, vol.28
, Issue.3
, pp. 238-255
-
-
Jouffe, L.1
-
11
-
-
0041876271
-
Areinforcement learning adaptive fuzzy controller for robots
-
Aug.
-
C.-K. Lin, "Areinforcement learning adaptive fuzzy controller for robots," Fuzzy Sets Syst., vol. 137, no. 1, pp. 339-352, Aug. 2003.
-
(2003)
Fuzzy Sets Syst
, vol.137
, Issue.1
, pp. 339-352
-
-
Lin, C.-K.1
-
12
-
-
0030147547
-
Reinforcement learning for an ART-based fuzzy adaptive learning control network
-
May
-
C.-J. Lin and C.-T. Lin, " Reinforcement learning for an ART-based fuzzy adaptive learning control network," IEEE Trans. Neural Netw., vol. 7, no. 3, pp. 709-731, May 1996.
-
(1996)
IEEE Trans. Neural Netw.
, vol.7
, Issue.3
, pp. 709-731
-
-
Lin, C.-J.1
Lin, C.-T.2
-
13
-
-
78751477178
-
Probabilistic fuzzy systems in value-atrisk estimation
-
R. J. Almeida and U. Kaymak, " Probabilistic fuzzy systems in value-atrisk estimation," Int. J. Intell. Syst. Account., Finance Manag., vol. 16, no. 1/2, pp. 49-70, 2009.
-
(2009)
Int. J. Intell. Syst. Account., Finance Manag.
, vol.16
, Issue.1-2
, pp. 49-70
-
-
Almeida, R.J.1
Kaymak, U.2
-
14
-
-
34250731840
-
A fuzzy actor-critic reinforcement learning network
-
Sep.
-
X.-S.Wang et al., " A fuzzy actor-critic reinforcement learning network," Inf. Sci., vol. 177, no. 18, pp. 3764-3781, Sep. 2007.
-
(2007)
Inf. Sci.
, vol.177
, Issue.18
, pp. 3764-3781
-
-
Wang, X.-S.1
-
15
-
-
0026111015
-
Probabilistic modelling of intelligent robotic systems
-
Feb.
-
K. P. Valavanis and G. N. Saridis, " Probabilistic modelling of intelligent robotic systems," IEEE Trans. Robot. Autom., vol. 7, no. 1, pp. 164-171, Feb. 1991.
-
(1991)
IEEE Trans. Robot. Autom.
, vol.7
, Issue.1
, pp. 164-171
-
-
Valavanis, K.P.1
Saridis, G.N.2
-
16
-
-
0037843094
-
Probabilistic model for mechanical power fluctuations in asynchronous wind parks
-
May
-
J. C. Pidre et al., " Probabilistic model for mechanical power fluctuations in asynchronous wind parks," IEEE Trans. Power Syst., vol. 18, no. 2, pp. 761-768, May 2003.
-
(2003)
IEEE Trans. Power Syst.
, vol.18
, Issue.2
, pp. 761-768
-
-
Pidre, J.C.1
-
17
-
-
0030397309
-
A new radial basis probabilistic neural network model
-
presented at the, Beijing, China
-
H. Deshuang and M. Songde, " A new radial basis probabilistic neural network model," presented at the Int. Conf. Signal Processing, Beijing, China, 1996.
-
(1996)
Int. Conf. Signal Processing
-
-
Deshuang, H.1
Songde, M.2
-
18
-
-
84942928572
-
Probability theory and fuzzy logic are complementary rather than competitive
-
Aug.
-
L. A. Zadeh, "Probability theory and fuzzy logic are complementary rather than competitive" Technometrics, vol. 37, no. 3, pp. 271-276, Aug. 1995.
-
(1995)
Technometrics
, vol.37
, Issue.3
, pp. 271-276
-
-
Zadeh, L.A.1
-
19
-
-
0028370963
-
Unity and diversity of fuzziness-from a probability viewpoint
-
Feb.
-
M. Laviolette and J.W. Seaman, " Unity and diversity of fuzziness-from a probability viewpoint," IEEE Trans. Fuzzy Syst., vol. 2, no. 1, pp. 38-42, Feb. 1994.
-
(1994)
IEEE Trans. Fuzzy Syst.
, vol.2
, Issue.1
, pp. 38-42
-
-
Laviolette, M.1
Seaman, J.W.2
-
20
-
-
0030142102
-
What does a probabilistic interpretation of fuzzy sets mean?
-
May
-
P. Liang and F. Song, " What does a probabilistic interpretation of fuzzy sets mean?," IEEE Trans. Fuzzy Syst., vol. 4, no. 2, pp. 200-205, May 1996.
-
(1996)
IEEE Trans. Fuzzy Syst.
, vol.4
, Issue.2
, pp. 200-205
-
-
Liang, P.1
Song, F.2
-
21
-
-
30344440822
-
A probabilistic fuzzy logic system for modeling and control
-
DOI 10.1109/TFUZZ.2005.859326
-
Z. Liu and H.-X. Li, " A probabilistic fuzzy logic system for modelling and control," IEEE Trans. Fuzzy Syst., vol. 13, no. 6, pp. 848-859, Dec. 2005. (Pubitemid 43065967)
-
(2005)
IEEE Transactions on Fuzzy Systems
, vol.13
, Issue.6
, pp. 848-859
-
-
Liu, Z.1
Li, H.-X.2
-
22
-
-
0036458314
-
Fuzzy classification using probability-based rule weighting
-
Honolulu, HI
-
J. v. d. Berg et al., "Fuzzy cla ssification using probability-based rule weighting," in Proc. IEEE Int. Conf. Fuzzy Syst., Honolulu, HI, 2002, pp. 991-996.
-
(2002)
Proc. IEEE Int. Conf. Fuzzy Syst.
, pp. 991-996
-
-
Berg, J.V.D.1
-
23
-
-
79551629766
-
Testing stochastic processes through reinforcement learning
-
presented at the, Vancouver, BC, Canada
-
F. Laviolette and S. Zhioua, " Testing stochastic processes through reinforcement learning," presented at the Workshop Testing Deployable Learn. Decision Syst., Vancouver, BC, Canada, 2006.
-
(2006)
Workshop Testing Deployable Learn. Decision Syst.
-
-
Laviolette, F.1
Zhioua, S.2
-
24
-
-
0005977690
-
-
Ph.D. dissertation School of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA
-
C. Baird, "Reinforcement learning through gradient descent," Ph.D. dissertation, School of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, 1999.
-
(1999)
Reinforcement Learning Through Gradient Descent
-
-
Baird, C.1
-
25
-
-
71149099079
-
Fast gradient-descentmethods for temporal-difference learning with linear function approximation
-
Montreal, QC, Canada
-
R. S. Sutton et al., " Fast gradient-descentmethods for temporal-difference learning with linear function approximation," in Proc. 26th Int. Conf. Mach. Learn., Montreal, QC, Canada, 2009, pp. 993-1000.
-
(2009)
Proc. 26th Int. Conf. Mach. Learn.
, pp. 993-1000
-
-
Sutton, R.S.1
-
26
-
-
84898958374
-
Gradient descent for general reinforcement learning
-
L. Baird and A. Moore, " Gradient descent for general reinforcement learning," in Proc. Adv. Neural Inf. Process. Syst. II, 1999, pp. 968-974.
-
(1999)
Proc. Adv. Neural Inf. Process. Syst.
, vol.2
, pp. 968-974
-
-
Baird, L.1
Moore, A.2
-
27
-
-
40949140522
-
Tracking control of a peddulum-driven cart-pole underactuated system
-
presented at the, Montreal, QC, Canada
-
H. Yu et al., " Tracking control of a peddulum-driven cart-pole underactuated system," presented at the IEEE Int. Conf. Syst., Man, Cybern., Montreal, QC, Canada, 2007.
-
(2007)
IEEE Int. Conf. Syst., Man, Cybern.
-
-
Yu, H.1
-
28
-
-
84987414225
-
Refinement of approximate reasoning-based controllers by reinforcement learning
-
presented at the, San Francisco, CA
-
H. R. Berenji, "Refinement of approximate reasoning-based controllers by reinforcement learning" presented at the 8th Int.Workshop Mach. Learn., San Francisco, CA, 1991.
-
(1991)
8th Int.Workshop Mach. Learn.
-
-
Berenji, H.R.1
-
29
-
-
0030400438
-
Fuzzy Q-learning for generalization of reinforcement learning
-
presented at the, New Orleans, LA
-
H. R. Berenji, "Fuzzy Q-learning for generalization of reinforcement learning" presented at the 5th IEEE Int. Conf. Fuzzy Syst., New Orleans, LA, 1996.
-
(1996)
5th IEEE Int. Conf. Fuzzy Syst.
-
-
Berenji, H.R.1
-
30
-
-
0028369322
-
Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems
-
Feb.
-
C.-T. Lin and C. S. G. Lee, " Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems," IEEE Trans. Fuzzy Syst., vol. 2, no. 1, pp. 46-63, Feb. 1994.
-
(1994)
IEEE Trans. Fuzzy Syst.
, vol.2
, Issue.1
, pp. 46-63
-
-
Lin, C.-T.1
Lee, C.S.G.2
-
31
-
-
0026366218
-
Neural-network-based fuzzy logic control and decision system
-
Dec.
-
C.-T. Lin and C. S. G. Lee, " Neural-network-based fuzzy logic control and decision system," IEEE Trans. Comput., vol. 40, no. 12, pp. 1320-1336, Dec. 1991.
-
(1991)
IEEE Trans. Comput.
, vol.40
, Issue.12
, pp. 1320-1336
-
-
Lin, C.-T.1
Lee, C.S.G.2
-
32
-
-
0001913511
-
Fuzzy adaptive learning control network with on-line neural learning
-
Apr.
-
C.-T. Lin et al., " Fuzzy adaptive learning control network with on-line neural learning," Fuzzy Sets Syst., vol. 71, no. 1, pp. 25-45, Apr. 1995.
-
(1995)
Fuzzy Sets Syst.
, vol.71
, Issue.1
, pp. 25-45
-
-
Lin, C.-T.1
-
34
-
-
84880772945
-
Point-based value iteration: An any time algorithm for POMDPs
-
presented at the, Acapulco, Mexico
-
J. Pineau, "Point-based value iteration: An any time algorithm for POMDPs," presented at the Int. Joint Conf. Artif. Intell., Acapulco, Mexico, 2003.
-
(2003)
Int. Joint Conf. Artif. Intell.
-
-
Pineau, J.1
-
35
-
-
33646016345
-
VDCBPI: An approximate scalable algorithm for large POMDPs
-
presented at the, Vancouver, BC, Canada
-
P. Poupart and C. Boutilier, " VDCBPI: An approximate scalable algorithm for large POMDPs," presented at the Advances Neural Inform. Process. Syst., Vancouver, BC, Canada, 2004.
-
(2004)
Advances Neural Inform. Process. Syst.
-
-
Poupart, P.1
Boutilier, C.2
-
36
-
-
27344443125
-
Finding approximate POMDP solutions through belief compression
-
Jan.
-
N. Roy et al., " Finding approximate POMDP solutions through belief compression," J. Artif. Intell. Res., vol. 23, no. 1, pp. 1-40, Jan. 2005.
-
(2005)
J. Artif. Intell. Res.
, vol.23
, Issue.1
, pp. 1-40
-
-
Roy, N.1
|