메뉴 건너뛰기




Volumn 19, Issue 1, 2011, Pages 51-64

Systems control with generalized probabilistic fuzzy-reinforcement learning

Author keywords

Actorcritic (AC); learning agent; probabilistic fuzzy systems; reinforcement learning (RL); systems control

Indexed keywords

ACTOR CRITIC; APPROXIMATION CAPABILITIES; CONTROL ACTIONS; ENHANCED LEARNING; GRADIENT-DESCENT; INPUT-OUTPUT DATA; LEARNING AGENT; LEARNING ARCHITECTURES; LEARNING METHODS; LEARNING STRUCTURE; PROBABILISTIC FUZZY SYSTEMS; PROBABILISTIC UNCERTAINTY; PROBABILITY MEASURES; SYSTEMS CONTROL;

EID: 79551653988     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2010.2081994     Document Type: Article
Times cited : (29)

References (36)
  • 1
    • 1142279665 scopus 로고    scopus 로고
    • Financial markets analysis by using a probabilistic fuzzy modelling approach
    • J. van den Berg et al., " Financial markets analysis by using a probabilistic fuzzy modelling approach," Int. J. Approx. Reason., vol. 35, no. 3, pp. 291-305, 2004.
    • (2004) Int. J. Approx. Reason. , vol.35 , Issue.3 , pp. 291-305
    • Berg Den J.Van1
  • 2
    • 0003787146 scopus 로고
    • Princeton, NJ: Princeton Univ. Press
    • R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton Univ. Press, 1957.
    • (1957) Dynamic Programming
    • Bellman, R.E.1
  • 3
    • 0020970738 scopus 로고
    • Neuron-like adaptive elements that can solve difficult learning control problems
    • A. G. Barto et al., " Neuron-like adaptive elements that can solve difficult learning control problems," IEEE Trans. Syst., Man, Cybern., vol. SMC- 13, no. 5, pp. 835-846, 1983.
    • (1983) IEEE Trans. Syst., Man, Cybern. , vol.SMC- 13 , Issue.5 , pp. 835-846
    • Barto, A.G.1
  • 4
    • 0024646143 scopus 로고
    • Learning to control an inverted pendulum using neural networks
    • Apr.
    • C. W. Anderson, "Learning to control an inverted pendulum using neural networks," IEEE Control Syst. Mag., vol. 9, no. 3, pp. 31-37, Apr. 1989.
    • (1989) IEEE Control Syst. Mag. , vol.9 , Issue.3 , pp. 31-37
    • Anderson, C.W.1
  • 5
    • 0026923465 scopus 로고
    • Learning and tuning fuzzy logic controllers through reinforcements
    • Sep.
    • H. R. Berenji and P. Khedkar, " Learning and tuning fuzzy logic controllers through reinforcements," IEEE Trans.NeuralNetw., vol. 3, no. 5, pp. 724- 740, Sep. 1992.
    • (1992) IEEE Trans.Neural Netw. , vol.3 , Issue.5 , pp. 724-740
    • Berenji, H.R.1    Khedkar, P.2
  • 6
    • 0025842468 scopus 로고
    • A self-learning rule-based controller employing approximate reasoning and neural net concept
    • C.-C. Lee, "A self-learning rule-based controller employing approximate reasoning and neural net concept" Int. J. Intell. Syst., vol. 6, no. 1, pp. 71-93, 1991.
    • (1991) Int. J. Intell. Syst. , vol.6 , Issue.1 , pp. 71-93
    • Lee, C.-C.1
  • 7
    • 0027202835 scopus 로고
    • Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems
    • presented at the, San Francisco, CA
    • C.-T. Lin and C. S. G. Lee, " Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems," presented at the IEEE Int. Conf. Fuzzy Syst., San Francisco, CA, 1993.
    • (1993) IEEE Int. Conf. Fuzzy Syst.
    • Lin, C.-T.1    Lee, C.S.G.2
  • 8
    • 0029275364 scopus 로고
    • A neural fuzzy control system with structure and parameter learning
    • Mar.
    • C.-T. Lin, "A neural fuzzy control system with structure and parameter learning," Fuzzy Sets Syst., vol. 70, no. 2/3, pp. 183-212, Mar. 1995.
    • (1995) Fuzzy Sets Syst , vol.70 , Issue.2-3 , pp. 183-212
    • Lin, C.-T.1
  • 9
    • 79551620970 scopus 로고    scopus 로고
    • Reinforcement learning for fuzzy control with linguistic states
    • Oct.
    • M. H. F. Zarandi et al., " Reinforcement learning for fuzzy control with linguistic states," J. Uncertain Syst., vol. 2, pp. 54-66, Oct. 2008.
    • (2008) J. Uncertain Syst. , vol.2 , pp. 54-66
    • Zarandi, M.H.F.1
  • 10
    • 0032140718 scopus 로고    scopus 로고
    • Fuzzy inference system learning by reinforcement methods
    • Aug.
    • L. Jouffe, "Fuzzy inference system learning by reinforcement methods," IEEE Trans. Syst., Man, Cybern., vol. 28, no. 3, pp. 238-255, Aug. 1998.
    • (1998) IEEE Trans. Syst., Man, Cybern. , vol.28 , Issue.3 , pp. 238-255
    • Jouffe, L.1
  • 11
    • 0041876271 scopus 로고    scopus 로고
    • Areinforcement learning adaptive fuzzy controller for robots
    • Aug.
    • C.-K. Lin, "Areinforcement learning adaptive fuzzy controller for robots," Fuzzy Sets Syst., vol. 137, no. 1, pp. 339-352, Aug. 2003.
    • (2003) Fuzzy Sets Syst , vol.137 , Issue.1 , pp. 339-352
    • Lin, C.-K.1
  • 12
    • 0030147547 scopus 로고    scopus 로고
    • Reinforcement learning for an ART-based fuzzy adaptive learning control network
    • May
    • C.-J. Lin and C.-T. Lin, " Reinforcement learning for an ART-based fuzzy adaptive learning control network," IEEE Trans. Neural Netw., vol. 7, no. 3, pp. 709-731, May 1996.
    • (1996) IEEE Trans. Neural Netw. , vol.7 , Issue.3 , pp. 709-731
    • Lin, C.-J.1    Lin, C.-T.2
  • 13
  • 14
    • 34250731840 scopus 로고    scopus 로고
    • A fuzzy actor-critic reinforcement learning network
    • Sep.
    • X.-S.Wang et al., " A fuzzy actor-critic reinforcement learning network," Inf. Sci., vol. 177, no. 18, pp. 3764-3781, Sep. 2007.
    • (2007) Inf. Sci. , vol.177 , Issue.18 , pp. 3764-3781
    • Wang, X.-S.1
  • 15
    • 0026111015 scopus 로고
    • Probabilistic modelling of intelligent robotic systems
    • Feb.
    • K. P. Valavanis and G. N. Saridis, " Probabilistic modelling of intelligent robotic systems," IEEE Trans. Robot. Autom., vol. 7, no. 1, pp. 164-171, Feb. 1991.
    • (1991) IEEE Trans. Robot. Autom. , vol.7 , Issue.1 , pp. 164-171
    • Valavanis, K.P.1    Saridis, G.N.2
  • 16
    • 0037843094 scopus 로고    scopus 로고
    • Probabilistic model for mechanical power fluctuations in asynchronous wind parks
    • May
    • J. C. Pidre et al., " Probabilistic model for mechanical power fluctuations in asynchronous wind parks," IEEE Trans. Power Syst., vol. 18, no. 2, pp. 761-768, May 2003.
    • (2003) IEEE Trans. Power Syst. , vol.18 , Issue.2 , pp. 761-768
    • Pidre, J.C.1
  • 17
    • 0030397309 scopus 로고    scopus 로고
    • A new radial basis probabilistic neural network model
    • presented at the, Beijing, China
    • H. Deshuang and M. Songde, " A new radial basis probabilistic neural network model," presented at the Int. Conf. Signal Processing, Beijing, China, 1996.
    • (1996) Int. Conf. Signal Processing
    • Deshuang, H.1    Songde, M.2
  • 18
    • 84942928572 scopus 로고
    • Probability theory and fuzzy logic are complementary rather than competitive
    • Aug.
    • L. A. Zadeh, "Probability theory and fuzzy logic are complementary rather than competitive" Technometrics, vol. 37, no. 3, pp. 271-276, Aug. 1995.
    • (1995) Technometrics , vol.37 , Issue.3 , pp. 271-276
    • Zadeh, L.A.1
  • 19
    • 0028370963 scopus 로고
    • Unity and diversity of fuzziness-from a probability viewpoint
    • Feb.
    • M. Laviolette and J.W. Seaman, " Unity and diversity of fuzziness-from a probability viewpoint," IEEE Trans. Fuzzy Syst., vol. 2, no. 1, pp. 38-42, Feb. 1994.
    • (1994) IEEE Trans. Fuzzy Syst. , vol.2 , Issue.1 , pp. 38-42
    • Laviolette, M.1    Seaman, J.W.2
  • 20
    • 0030142102 scopus 로고    scopus 로고
    • What does a probabilistic interpretation of fuzzy sets mean?
    • May
    • P. Liang and F. Song, " What does a probabilistic interpretation of fuzzy sets mean?," IEEE Trans. Fuzzy Syst., vol. 4, no. 2, pp. 200-205, May 1996.
    • (1996) IEEE Trans. Fuzzy Syst. , vol.4 , Issue.2 , pp. 200-205
    • Liang, P.1    Song, F.2
  • 21
    • 30344440822 scopus 로고    scopus 로고
    • A probabilistic fuzzy logic system for modeling and control
    • DOI 10.1109/TFUZZ.2005.859326
    • Z. Liu and H.-X. Li, " A probabilistic fuzzy logic system for modelling and control," IEEE Trans. Fuzzy Syst., vol. 13, no. 6, pp. 848-859, Dec. 2005. (Pubitemid 43065967)
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.6 , pp. 848-859
    • Liu, Z.1    Li, H.-X.2
  • 22
    • 0036458314 scopus 로고    scopus 로고
    • Fuzzy classification using probability-based rule weighting
    • Honolulu, HI
    • J. v. d. Berg et al., "Fuzzy cla ssification using probability-based rule weighting," in Proc. IEEE Int. Conf. Fuzzy Syst., Honolulu, HI, 2002, pp. 991-996.
    • (2002) Proc. IEEE Int. Conf. Fuzzy Syst. , pp. 991-996
    • Berg, J.V.D.1
  • 23
    • 79551629766 scopus 로고    scopus 로고
    • Testing stochastic processes through reinforcement learning
    • presented at the, Vancouver, BC, Canada
    • F. Laviolette and S. Zhioua, " Testing stochastic processes through reinforcement learning," presented at the Workshop Testing Deployable Learn. Decision Syst., Vancouver, BC, Canada, 2006.
    • (2006) Workshop Testing Deployable Learn. Decision Syst.
    • Laviolette, F.1    Zhioua, S.2
  • 24
    • 0005977690 scopus 로고    scopus 로고
    • Ph.D. dissertation School of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA
    • C. Baird, "Reinforcement learning through gradient descent," Ph.D. dissertation, School of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, 1999.
    • (1999) Reinforcement Learning Through Gradient Descent
    • Baird, C.1
  • 25
    • 71149099079 scopus 로고    scopus 로고
    • Fast gradient-descentmethods for temporal-difference learning with linear function approximation
    • Montreal, QC, Canada
    • R. S. Sutton et al., " Fast gradient-descentmethods for temporal-difference learning with linear function approximation," in Proc. 26th Int. Conf. Mach. Learn., Montreal, QC, Canada, 2009, pp. 993-1000.
    • (2009) Proc. 26th Int. Conf. Mach. Learn. , pp. 993-1000
    • Sutton, R.S.1
  • 26
    • 84898958374 scopus 로고    scopus 로고
    • Gradient descent for general reinforcement learning
    • L. Baird and A. Moore, " Gradient descent for general reinforcement learning," in Proc. Adv. Neural Inf. Process. Syst. II, 1999, pp. 968-974.
    • (1999) Proc. Adv. Neural Inf. Process. Syst. , vol.2 , pp. 968-974
    • Baird, L.1    Moore, A.2
  • 27
    • 40949140522 scopus 로고    scopus 로고
    • Tracking control of a peddulum-driven cart-pole underactuated system
    • presented at the, Montreal, QC, Canada
    • H. Yu et al., " Tracking control of a peddulum-driven cart-pole underactuated system," presented at the IEEE Int. Conf. Syst., Man, Cybern., Montreal, QC, Canada, 2007.
    • (2007) IEEE Int. Conf. Syst., Man, Cybern.
    • Yu, H.1
  • 28
    • 84987414225 scopus 로고
    • Refinement of approximate reasoning-based controllers by reinforcement learning
    • presented at the, San Francisco, CA
    • H. R. Berenji, "Refinement of approximate reasoning-based controllers by reinforcement learning" presented at the 8th Int.Workshop Mach. Learn., San Francisco, CA, 1991.
    • (1991) 8th Int.Workshop Mach. Learn.
    • Berenji, H.R.1
  • 29
    • 0030400438 scopus 로고    scopus 로고
    • Fuzzy Q-learning for generalization of reinforcement learning
    • presented at the, New Orleans, LA
    • H. R. Berenji, "Fuzzy Q-learning for generalization of reinforcement learning" presented at the 5th IEEE Int. Conf. Fuzzy Syst., New Orleans, LA, 1996.
    • (1996) 5th IEEE Int. Conf. Fuzzy Syst.
    • Berenji, H.R.1
  • 30
    • 0028369322 scopus 로고
    • Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems
    • Feb.
    • C.-T. Lin and C. S. G. Lee, " Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems," IEEE Trans. Fuzzy Syst., vol. 2, no. 1, pp. 46-63, Feb. 1994.
    • (1994) IEEE Trans. Fuzzy Syst. , vol.2 , Issue.1 , pp. 46-63
    • Lin, C.-T.1    Lee, C.S.G.2
  • 31
    • 0026366218 scopus 로고
    • Neural-network-based fuzzy logic control and decision system
    • Dec.
    • C.-T. Lin and C. S. G. Lee, " Neural-network-based fuzzy logic control and decision system," IEEE Trans. Comput., vol. 40, no. 12, pp. 1320-1336, Dec. 1991.
    • (1991) IEEE Trans. Comput. , vol.40 , Issue.12 , pp. 1320-1336
    • Lin, C.-T.1    Lee, C.S.G.2
  • 32
    • 0001913511 scopus 로고
    • Fuzzy adaptive learning control network with on-line neural learning
    • Apr.
    • C.-T. Lin et al., " Fuzzy adaptive learning control network with on-line neural learning," Fuzzy Sets Syst., vol. 71, no. 1, pp. 25-45, Apr. 1995.
    • (1995) Fuzzy Sets Syst. , vol.71 , Issue.1 , pp. 25-45
    • Lin, C.-T.1
  • 34
    • 84880772945 scopus 로고    scopus 로고
    • Point-based value iteration: An any time algorithm for POMDPs
    • presented at the, Acapulco, Mexico
    • J. Pineau, "Point-based value iteration: An any time algorithm for POMDPs," presented at the Int. Joint Conf. Artif. Intell., Acapulco, Mexico, 2003.
    • (2003) Int. Joint Conf. Artif. Intell.
    • Pineau, J.1
  • 35
    • 33646016345 scopus 로고    scopus 로고
    • VDCBPI: An approximate scalable algorithm for large POMDPs
    • presented at the, Vancouver, BC, Canada
    • P. Poupart and C. Boutilier, " VDCBPI: An approximate scalable algorithm for large POMDPs," presented at the Advances Neural Inform. Process. Syst., Vancouver, BC, Canada, 2004.
    • (2004) Advances Neural Inform. Process. Syst.
    • Poupart, P.1    Boutilier, C.2
  • 36
    • 27344443125 scopus 로고    scopus 로고
    • Finding approximate POMDP solutions through belief compression
    • Jan.
    • N. Roy et al., " Finding approximate POMDP solutions through belief compression," J. Artif. Intell. Res., vol. 23, no. 1, pp. 1-40, Jan. 2005.
    • (2005) J. Artif. Intell. Res. , vol.23 , Issue.1 , pp. 1-40
    • Roy, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.