메뉴 건너뛰기




Volumn 11, Issue 3-4, 2007, Pages 429-440

Perturbed functional differential equations with fractional order

Author keywords

[No Author keywords available]

Indexed keywords


EID: 37349041073     PISSN: 10832564     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (17)

References (30)
  • 1
    • 0040676467 scopus 로고    scopus 로고
    • A fixed point theorem of Krasnoselskii-Schaefer type
    • T. A. Burton and C. Kirk, A fixed point theorem of Krasnoselskii-Schaefer type, Math. Nachr. 189 (1998), 23-31.
    • (1998) Math. Nachr , vol.189 , pp. 23-31
    • Burton, T.A.1    Kirk, C.2
  • 2
    • 0030528474 scopus 로고    scopus 로고
    • Existence and uniqueness for a nonlinear fractional differential equation
    • D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204 (1996), 609-625.
    • (1996) J. Math. Anal. Appl , vol.204 , pp. 609-625
    • Delbosco, D.1    Rodino, L.2
  • 3
    • 3042676828 scopus 로고    scopus 로고
    • Existence theory for nonlinear functional boundary value problems
    • 15 pp
    • B. C. Dhage and J. Henderson, Existence theory for nonlinear functional boundary value problems, Electron. J. Qual. Theory Differ. Equ. 2004, No. 1, 15 pp.
    • (2004) Electron. J. Qual. Theory Differ. Equ , Issue.1
    • Dhage, B.C.1    Henderson, J.2
  • 4
    • 0002795136 scopus 로고    scopus 로고
    • On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity
    • F. Keil, W. Mackens, H. Voss, and J. Werther, Eds, pp, Springer-Verlag, Heidelberg
    • K. Diethelm and A.D. Reed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in "Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties" (F. Keil, W. Mackens, H. Voss, and J. Werther, Eds), pp 217-224, Springer-Verlag, Heidelberg, 1999.
    • (1999) Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties , pp. 217-224
    • Diethelm, K.1    Reed, A.D.2
  • 5
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248.
    • (2002) J. Math. Anal. Appl , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 6
    • 0043044718 scopus 로고    scopus 로고
    • Numerical solution of fractional order differential equations by extrapolation
    • K. Diethehn and G. Walz, Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms 16 (1997), 231-253.
    • (1997) Numer. Algorithms , vol.16 , pp. 231-253
    • Diethehn, K.1    Walz, G.2
  • 7
    • 0038086852 scopus 로고
    • Fractional order evolution equations
    • A. M. A. El-Sayed, Fractional order evolution equations, J. Fract. Calc. 7 (1995), 89-100.
    • (1995) J. Fract. Calc , vol.7 , pp. 89-100
    • El-Sayed, A.M.A.1
  • 8
    • 0030531939 scopus 로고    scopus 로고
    • Fractional order diffusion-wave equations
    • A. M. A. El-Sayed, Fractional order diffusion-wave equations, Intern. J. Theo. Physics 35 (1996), 311-322.
    • (1996) Intern. J. Theo. Physics , vol.35 , pp. 311-322
    • El-Sayed, A.M.A.1
  • 9
    • 0032115069 scopus 로고    scopus 로고
    • Nonlinear functional differential equations of arbitrary orders
    • A. M. A. El-Sayed, Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. 33 (1998), 181-186.
    • (1998) Nonlinear Anal , vol.33 , pp. 181-186
    • El-Sayed, A.M.A.1
  • 10
    • 0011639086 scopus 로고
    • Multivalued fractional differential equations
    • A. M. A. El-Sayed and A. G. Ibrahim, Multivalued fractional differential equations, Appl. Math. Comput. 68 (1995), 15-25.
    • (1995) Appl. Math. Comput , vol.68 , pp. 15-25
    • El-Sayed, A.M.A.1    Ibrahim, A.G.2
  • 13
    • 0028878140 scopus 로고
    • A fractional calculus approach of self-similar protein dynamics
    • W. G. Glockle and T. F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68 (1995), 46-53.
    • (1995) Biophys. J , vol.68 , pp. 46-53
    • Glockle, W.G.1    Nonnenmacher, T.F.2
  • 18
    • 17444382726 scopus 로고    scopus 로고
    • Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions
    • A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations 41 (2005), 84-89.
    • (2005) Differential Equations , vol.41 , pp. 84-89
    • Kilbas, A.A.1    Marzan, S.A.2
  • 19
    • 77956684069 scopus 로고    scopus 로고
    • Theory and Applications of Fractional Differential Equations
    • Elsevier Science B.V, Amsterdam
    • A. A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
    • (2006) North-Holland Mathematics Studies , vol.204
    • Kilbas, A.A.1    Srivastava, H.M.2    Trujillo, J.J.3
  • 20
    • 0003310684 scopus 로고    scopus 로고
    • Introduction to the Theory and Applications of Functional-Differential Equations
    • Kluwer Academic Publishers, Dordrecht
    • V. Kolmanovskii, and A. Myshkis, Introduction to the Theory and Applications of Functional-Differential Equations. Mathematics and its Applications, 463. Kluwer Academic Publishers, Dordrecht, 1999.
    • (1999) Mathematics and its Applications , vol.463
    • Kolmanovskii, V.1    Myshkis, A.2
  • 21
    • 0001983732 scopus 로고    scopus 로고
    • Fractional calculus: Some basic problems in continuum and statistical mechanics
    • A. Carpinteri and F. Mainardi, Eds, pp, Springer-Verlag, Wien
    • F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in "Fractals and Fractional Calculus in Continuum Mechanics" (A. Carpinteri and F. Mainardi, Eds), pp. 291-348, Springer-Verlag, Wien, 1997.
    • (1997) Fractals and Fractional Calculus in Continuum Mechanics , pp. 291-348
    • Mainardi, F.1
  • 22
    • 0001044887 scopus 로고
    • Relaxation in filled polymers: A fractional calculus approach
    • F. Metzler, W. Schick, H. G. Kilian and T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180-7186.
    • (1995) J. Chem. Phys , vol.103 , pp. 7180-7186
    • Metzler, F.1    Schick, W.2    Kilian, H.G.3    Nonnenmacher, T.F.4
  • 24
    • 34848921672 scopus 로고    scopus 로고
    • Some comparison results for integro-fractional differential inequalities
    • S. M. Momani and S. B. Hadid, Some comparison results for integro-fractional differential inequalities. J. Fract. Calc. 24 (2003), 37-44.
    • (2003) J. Fract. Calc , vol.24 , pp. 37-44
    • Momani, S.M.1    Hadid, S.B.2
  • 25
    • 17844385541 scopus 로고    scopus 로고
    • Some analytical properties of solutions of differential equations of noninteger order
    • S. M. Momani, S. B. Hadid and Z. M. Alawenh, Some analytical properties of solutions of differential equations of noninteger order, Int. J. Math. Math. Sci. 2004 (2004), 697-701.
    • (2004) Int. J. Math. Math. Sci , vol.2004 , pp. 697-701
    • Momani, S.M.1    Hadid, S.B.2    Alawenh, Z.M.3
  • 28
    • 0036650890 scopus 로고    scopus 로고
    • Analogue realizations of fractional-order controllers. Fractional order calculus and its applications
    • I. Podlubny, I. Petraš, B. M. Vinagre, P. O'Leary and L. Dorčak, Analogue realizations of fractional-order controllers. Fractional order calculus and its applications, Nonlinear Dynam. 29 (2002), 281-296.
    • (2002) Nonlinear Dynam , vol.29 , pp. 281-296
    • Podlubny, I.1    Petraš, I.2    Vinagre, B.M.3    O'Leary, P.4    Dorčak, L.5
  • 30
    • 23844442815 scopus 로고    scopus 로고
    • Existence of fractional differential equations
    • C. Yu and G. Gao, Existence of fractional differential equations, J. Math. Anal. Appl. 310 (2005), 26-29.
    • (2005) J. Math. Anal. Appl , vol.310 , pp. 26-29
    • Yu, C.1    Gao, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.