-
2
-
-
79551470252
-
-
Available electronicly at
-
Winfried Bruns, Bogdan Ichim, and Christof Söger. NORMALIZ, a tool for computations in affine monoids, vector configurations, lattice polytopes and rational cones. Available electronicly at http://www.math.uos.de/normaliz/, 2009.
-
(2009)
NORMALIZ, a Tool for Computations in Affine Monoids, Vector Configurations, Lattice Polytopes and Rational Cones
-
-
Bruns, W.1
Ichim, B.2
Söger, C.3
-
3
-
-
79551486856
-
Challenging computations of Hilbert bases of cones associated with algebraic statistics
-
e-print, available at
-
Winfried Bruns, Raymond Hemmecke, Bogdan Ichim, Matthias Köppe, and Christof Söger. Challenging computations of Hilbert bases of cones associated with algebraic statistics. To appear in Experimental Mathematics, e-print available at arxiv.org/abs/1001.4145v1, 2010.
-
(2010)
To Appear in Experimental Mathematics
-
-
Bruns, W.1
Hemmecke, R.2
Ichim, B.3
Köppe, M.4
Söger, C.5
-
4
-
-
0042967741
-
Optimal structure identification with greedy search
-
David M. Chickering. Optimal structure identification with greedy search. Journal of Machine Learning Research, 3(2):507-554, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, Issue.2
, pp. 507-554
-
-
Chickering, D.M.1
-
10
-
-
39449103892
-
Three counter-examples on semi-graphoids
-
Raymond Hemmecke, Jason Morton, Anne Shiu, Bernd Sturmfels, and Oliver Wienand. Three counter-examples on semi-graphoids. Combinatorics, Probability and Computing, 17(2):239-257, 2008.
-
(2008)
Combinatorics, Probability and Computing
, vol.17
, Issue.2
, pp. 239-257
-
-
Hemmecke, R.1
Morton, J.2
Shiu, A.3
Sturmfels, B.4
Wienand, O.5
-
11
-
-
79551475451
-
-
IBM Ilog team. CPLEX, Available electronicly at
-
IBM Ilog team. CPLEX, a mathematical programming optimizer. Available electronicly at www-01.ibm.com/software/integration/optimization/cplex/, 2009.
-
(2009)
A Mathematical Programming Optimizer
-
-
-
15
-
-
77955231016
-
On the conditional independence implication problem, a lattice theoretic approach
-
AUAI Press
-
Mathias Niepert, Dirk van Gucht, and Marc Gyssens. On the conditional independence implication problem, a lattice theoretic approach. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, pages 435-443, AUAI Press, 2008.
-
(2008)
Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence
, pp. 435-443
-
-
Niepert, M.1
Van Gucht, D.2
Gyssens, M.3
-
16
-
-
77955230140
-
Logical inference algorithms and matrix representations for probabilistic conditional independence
-
AUAI Press
-
Mathias Niepert. Logical inference algorithms and matrix representations for probabilistic conditional independence. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pages 428-435, AUAI Press, 2009.
-
(2009)
Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence
, pp. 428-435
-
-
Niepert, M.1
-
17
-
-
77955229312
-
Logical and algorithmic properties of stable conditional independence
-
Mathias Niepert, Dirk van Gucht, and Marc Gyssens. Logical and algorithmic properties of stable conditional independence. International Journal of Approximate Reasoning, 51(5):531-543, 2010.
-
(2010)
International Journal of Approximate Reasoning
, vol.51
, Issue.5
, pp. 531-543
-
-
Niepert, M.1
Van Gucht, D.2
Gyssens, M.3
-
21
-
-
0024943740
-
Multiinformation and the problem of characterization of conditional independence relations
-
Milan Studený. Multiinformation and the problem of characterization of conditional independence relations. Problems of Control and Information Theory, 18(1):3-16, 1989.
-
(1989)
Problems of Control and Information Theory
, vol.18
, Issue.1
, pp. 3-16
-
-
Studený, M.1
-
22
-
-
0041692109
-
-
Research reports n. 1733 and 1734, Institute of Information Theory and Automation Prague November
-
Milan Studený. Convex set functions I and II. Research reports n. 1733 and 1734, Institute of Information Theory and Automation, Prague, November 1991.
-
(1991)
Convex Set Functions I and II
-
-
Studený, M.1
-
23
-
-
0010004096
-
Conditional independence relations have no finite complete characterization
-
(S. Kubík, J. Á. Víšek eds), Kluwer
-
Milan Studený. Conditional independence relations have no finite complete characterization. In Information Theory, Statistical Decision Functions and Random Processes, Transactions of the 11th Prague Conference, vol. B (S. Kubík, J. Á. Víšek eds.), pages 377-396, Kluwer, 1992.
-
(1992)
Information Theory, Statistical Decision Functions and Random Processes, Transactions of the 11th Prague Conference
, vol.B
, pp. 377-396
-
-
Studený, M.1
-
24
-
-
79551473209
-
Convex cones in finite-dimensional real vector spaces
-
Milan Studený. Convex cones in finite-dimensional real vector spaces. Kybernetika, 29(2):180-200, 1993.
-
(1993)
Kybernetika
, vol.29
, Issue.2
, pp. 180-200
-
-
Studený, M.1
-
25
-
-
73249142545
-
-
Research report n., Institute of Information Theory and Automation, Prague, January 2000
-
Milan Studený, Remco R. Bouckaert, and TomÁš Kočka. Extreme supermodular set functions over five variables. Research report n. 1977, Institute of Information Theory and Automation, Prague, January 2000.
-
(1977)
Extreme Supermodular Set Functions Over Five Variables
-
-
Studený, M.1
Bouckaert, R.R.2
Kočka, T.3
-
26
-
-
55649087077
-
Structural imsets, an algebraic method for describing conditional independence structures
-
(B. Bouchon-Meunier, G. Coletti, R. R. Yager eds.)
-
Milan Studený. Structural imsets, an algebraic method for describing conditional independence structures. In Proceedings of IPMU 2004 (B. Bouchon-Meunier, G. Coletti, R. R. Yager eds.), pages 1323-1330, 2004.
-
(2004)
Proceedings of IPMU 2004
, pp. 1323-1330
-
-
Studený, M.1
-
28
-
-
77955230142
-
A geometric view on learning Bayesian network structures
-
Milan Studený, Ji?rí Vomlel, and Raymond Hemmecke. A geometric view on learning Bayesian network structures. International Journal of Approximate Reasoning, 51(5):573-586, 2010.
-
(2010)
International Journal of Approximate Reasoning
, vol.51
, Issue.5
, pp. 573-586
-
-
Studený, M.1
Vomlel, J.2
Hemmecke, R.3
|