메뉴 건너뛰기




Volumn 53, Issue 5-6, 2011, Pages 1351-1357

Regarding the accuracy of optimal eighth-order methods

Author keywords

Accuracy; Convergence radius; Efficiency index; Optimal eighth order methods; Order of convergence; Root

Indexed keywords

ACCURACY; CONVERGENCE RADIUS; EFFICIENCY INDEX; OPTIMAL EIGHTH-ORDER METHODS; ORDER OF CONVERGENCE; ROOT;

EID: 78751617180     PISSN: 08957177     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.mcm.2010.12.032     Document Type: Article
Times cited : (28)

References (20)
  • 3
    • 0016115525 scopus 로고
    • Optimal order of one-point and multipoint iteration
    • Kung H.T., Traub J.F. Optimal order of one-point and multipoint iteration. J. ACM 1974, 21:643-651.
    • (1974) J. ACM , vol.21 , pp. 643-651
    • Kung, H.T.1    Traub, J.F.2
  • 4
    • 67349144709 scopus 로고    scopus 로고
    • On Newton-type methods for multiple roots with cubic convergence
    • Homeier H.H.H. On Newton-type methods for multiple roots with cubic convergence. J. Comput. Appl. Math. 2009, 231:249-254.
    • (2009) J. Comput. Appl. Math. , vol.231 , pp. 249-254
    • Homeier, H.H.H.1
  • 5
    • 79958105882 scopus 로고    scopus 로고
    • Revisit of Jarratt method for solving nonlinear equations
    • Soleymani F. Revisit of Jarratt method for solving nonlinear equations. Numer. Algorithms 2010, 10.1007/s11075-010-9433-6.
    • (2010) Numer. Algorithms
    • Soleymani, F.1
  • 6
    • 69249236893 scopus 로고    scopus 로고
    • Review of some iterative root-finding methods from a dynamical point of view
    • Amat S., Busquier S., Plaza S. Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci. 2004, 10:3-35.
    • (2004) Sci. Ser. A Math. Sci. , vol.10 , pp. 3-35
    • Amat, S.1    Busquier, S.2    Plaza, S.3
  • 7
    • 10144252241 scopus 로고    scopus 로고
    • Newton iterative methods for nonlinear operator equations
    • Uko L.U., Adeyeye J.O. Newton iterative methods for nonlinear operator equations. Nonlinear Stud. 2001, 8:465-477.
    • (2001) Nonlinear Stud. , vol.8 , pp. 465-477
    • Uko, L.U.1    Adeyeye, J.O.2
  • 8
    • 67349258558 scopus 로고    scopus 로고
    • A new family of eighth-order iterative methods for solving nonlinear equations
    • Bi W., Wu Q., Ren H. A new family of eighth-order iterative methods for solving nonlinear equations. Appl. Math. Comput. 2009, 214:236-245.
    • (2009) Appl. Math. Comput. , vol.214 , pp. 236-245
    • Bi, W.1    Wu, Q.2    Ren, H.3
  • 9
    • 71649091186 scopus 로고    scopus 로고
    • Eighth-order methods with high efficiency index for solving nonlinear equations
    • Liu L., Wang X. Eighth-order methods with high efficiency index for solving nonlinear equations. Appl. Math. Comput. 2010, 215:3449-3454.
    • (2010) Appl. Math. Comput. , vol.215 , pp. 3449-3454
    • Liu, L.1    Wang, X.2
  • 10
    • 77954459261 scopus 로고    scopus 로고
    • A new family of modified Ostrowski's methods with accelerated eighth order convergence
    • Sharma J.R., Sharma R. A new family of modified Ostrowski's methods with accelerated eighth order convergence. Numer. Algorithms 2010, 54:445-458.
    • (2010) Numer. Algorithms , vol.54 , pp. 445-458
    • Sharma, J.R.1    Sharma, R.2
  • 11
    • 73349119076 scopus 로고    scopus 로고
    • A family of three-point methods of optimal order for solving nonlinear equations
    • Thukral R., Petkovic M.S. A family of three-point methods of optimal order for solving nonlinear equations. J. Comput. Appl. Math. 2010, 233:2278-2284.
    • (2010) J. Comput. Appl. Math. , vol.233 , pp. 2278-2284
    • Thukral, R.1    Petkovic, M.S.2
  • 12
    • 77950857560 scopus 로고    scopus 로고
    • New eighth-order iterative methods for solving nonlinear equations
    • Wang X., Liu L. New eighth-order iterative methods for solving nonlinear equations. J. Comput. Appl. Math. 2010, 234:1611-1620.
    • (2010) J. Comput. Appl. Math. , vol.234 , pp. 1611-1620
    • Wang, X.1    Liu, L.2
  • 13
    • 78751627069 scopus 로고    scopus 로고
    • A note on the "constructing" of nonstationary methods for solving nonlinear equations with raised speed of convergence
    • Kyurkchiev N., Iliev A. A note on the "constructing" of nonstationary methods for solving nonlinear equations with raised speed of convergence. Serdica J. Comput. 2009, 3:47-74.
    • (2009) Serdica J. Comput. , vol.3 , pp. 47-74
    • Kyurkchiev, N.1    Iliev, A.2
  • 15
    • 77953955577 scopus 로고    scopus 로고
    • Some new root-finding methods with eighth-order convergence
    • Kou J., Wang X., Sun S. Some new root-finding methods with eighth-order convergence. Bull. Math. Soc. Sci. Math. Roumanie 2010, 53:133-143.
    • (2010) Bull. Math. Soc. Sci. Math. Roumanie , vol.53 , pp. 133-143
    • Kou, J.1    Wang, X.2    Sun, S.3
  • 16
    • 0040822169 scopus 로고
    • Some efficient fourth order multipoint methods for solving equations
    • Jarratt P. Some efficient fourth order multipoint methods for solving equations. BIT 1969, 9:119-124.
    • (1969) BIT , vol.9 , pp. 119-124
    • Jarratt, P.1
  • 18
    • 48049116368 scopus 로고    scopus 로고
    • From third to fourth order variant of Newton's method for simple roots
    • Basu D. From third to fourth order variant of Newton's method for simple roots. Appl. Math. Comput. 2008, 202:886-892.
    • (2008) Appl. Math. Comput. , vol.202 , pp. 886-892
    • Basu, D.1
  • 19
    • 77956012600 scopus 로고    scopus 로고
    • A family of iterative methods with sixth and seventh order convergence for nonlinear equations
    • Cordero A., Hueso J.L., Martinez E., Torregrosa J.R. A family of iterative methods with sixth and seventh order convergence for nonlinear equations. Math. Comput. Modelling 2010, 52:1490-1496.
    • (2010) Math. Comput. Modelling , vol.52 , pp. 1490-1496
    • Cordero, A.1    Hueso, J.L.2    Martinez, E.3    Torregrosa, J.R.4
  • 20
    • 33847324757 scopus 로고    scopus 로고
    • A variant of Chebyshev's method with sixth-order convergence
    • Kou J., Li Y. A variant of Chebyshev's method with sixth-order convergence. Numer. Algorithms 2006, 43:273-278.
    • (2006) Numer. Algorithms , vol.43 , pp. 273-278
    • Kou, J.1    Li, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.