-
2
-
-
61649100103
-
-
C.K. Chui, L. Wuytack Eds, Elsevier Publ. Co, New York
-
I.K. Argyros, in: C.K. Chui, L. Wuytack (Eds.), Computational Theory of Iterative Methods, Series: Studies in Computational Mathematics, vol. 15, Elsevier Publ. Co., New York, 2007.
-
(2007)
Computational Theory of Iterative Methods, Series: Studies in Computational Mathematics
, vol.15
-
-
Argyros, I.K.1
-
3
-
-
0012940554
-
A family of fourth order methods for nonlinear equations
-
King R. A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 10 (1973) 876-879
-
(1973)
SIAM J. Numer. Anal.
, vol.10
, pp. 876-879
-
-
King, R.1
-
6
-
-
0016115525
-
Optimal order of one-point and multipoint iteration
-
Kung H.T., and Traub J.F. Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math. 21 (1974) 634-651
-
(1974)
J. Assoc. Comput. Math.
, vol.21
, pp. 634-651
-
-
Kung, H.T.1
Traub, J.F.2
-
8
-
-
0040822169
-
Some efficient fourth order multipoint methods for solving equations
-
Jarratt P. Some efficient fourth order multipoint methods for solving equations. BIT 9 (1969) 119-124
-
(1969)
BIT
, vol.9
, pp. 119-124
-
-
Jarratt, P.1
-
9
-
-
11744327261
-
Construction of iterative processes with high order of convergence
-
Ezquerro J.A., Hernández M.A., and Salanova M.A. Construction of iterative processes with high order of convergence. Int. J. Comp. Math. 69 (1998) 191-201
-
(1998)
Int. J. Comp. Math.
, vol.69
, pp. 191-201
-
-
Ezquerro, J.A.1
Hernández, M.A.2
Salanova, M.A.3
-
10
-
-
0040927500
-
An acceleration of Newton's method: Super-Halley method
-
Gutiérrez J.M., and Hernández M.A. An acceleration of Newton's method: Super-Halley method. Appl. Math. Comput. 117 (2001) 223-239
-
(2001)
Appl. Math. Comput.
, vol.117
, pp. 223-239
-
-
Gutiérrez, J.M.1
Hernández, M.A.2
-
11
-
-
38149146234
-
The Jarratt method in a Banach space setting
-
Argyros I.K. The Jarratt method in a Banach space setting. J. Comp. Appl. Math. 51 (1994) 103-106
-
(1994)
J. Comp. Appl. Math.
, vol.51
, pp. 103-106
-
-
Argyros, I.K.1
-
12
-
-
32144457008
-
An improvement to Ostrowski root-finding method
-
Grau M., and Díaz-Barrero J.L. An improvement to Ostrowski root-finding method. Appl. Math. Comput. 173 (2006) 450-456
-
(2006)
Appl. Math. Comput.
, vol.173
, pp. 450-456
-
-
Grau, M.1
Díaz-Barrero, J.L.2
-
13
-
-
34249788722
-
A family of modified Ostrowski methods with accelerated sixth-order convergence
-
Sharma J.R., and Guha R.K. A family of modified Ostrowski methods with accelerated sixth-order convergence. Appl. Math. Comput. 190 (2007) 111-115
-
(2007)
Appl. Math. Comput.
, vol.190
, pp. 111-115
-
-
Sharma, J.R.1
Guha, R.K.2
-
14
-
-
35448976006
-
Some sixth-order variants of Ostrowski root-finding methods
-
Chun C., and Ham Y. Some sixth-order variants of Ostrowski root-finding methods. Appl. Math. Comput. 193 (2007) 389-394
-
(2007)
Appl. Math. Comput.
, vol.193
, pp. 389-394
-
-
Chun, C.1
Ham, Y.2
-
15
-
-
34248326957
-
The improvements of modified Newton's method
-
Kou J. The improvements of modified Newton's method. Appl. Math. Comput. 189 (2007) 602-609
-
(2007)
Appl. Math. Comput.
, vol.189
, pp. 602-609
-
-
Kou, J.1
-
16
-
-
34249095545
-
An improvement of the Jarrat method
-
Kou J., Li Y., and Wang X. An improvement of the Jarrat method. Appl. Math. Comput. 189 (2007) 1816-1821
-
(2007)
Appl. Math. Comput.
, vol.189
, pp. 1816-1821
-
-
Kou, J.1
Li, Y.2
Wang, X.3
-
17
-
-
34250613065
-
Some improvements of Jarratt's method with sixth-order convergence
-
Chun C. Some improvements of Jarratt's method with sixth-order convergence. Appl. Math. Comput. 190 (2007) 1432-1437
-
(2007)
Appl. Math. Comput.
, vol.190
, pp. 1432-1437
-
-
Chun, C.1
-
18
-
-
34250658871
-
Modified householder iterative method for nonlinear equations
-
Noor K.I., Noor M.A., and Momani S. Modified householder iterative method for nonlinear equations. Appl. Math. Comput. 190 (2007) 1534-1539
-
(2007)
Appl. Math. Comput.
, vol.190
, pp. 1534-1539
-
-
Noor, K.I.1
Noor, M.A.2
Momani, S.3
-
19
-
-
50249134216
-
A sixth order method for nonlinear equations
-
Parhi S.K., and Gupta D.K. A sixth order method for nonlinear equations. Appl. Math. Comput. 203 (2008) 50-55
-
(2008)
Appl. Math. Comput.
, vol.203
, pp. 50-55
-
-
Parhi, S.K.1
Gupta, D.K.2
-
20
-
-
34548396243
-
Some variants of Ostrowski's method with seventh-order convergence
-
Kou J., Li Y., and Wang X. Some variants of Ostrowski's method with seventh-order convergence. J. Comput. Appl. Math. 209 (2007) 153-159
-
(2007)
J. Comput. Appl. Math.
, vol.209
, pp. 153-159
-
-
Kou, J.1
Li, Y.2
Wang, X.3
-
21
-
-
35448988061
-
Some quadrature based three-step iterative methods for non-linear equations
-
Mir N.A., and Zaman T. Some quadrature based three-step iterative methods for non-linear equations. Appl. Math. Comput. 193 (2007) 366-373
-
(2007)
Appl. Math. Comput.
, vol.193
, pp. 366-373
-
-
Mir, N.A.1
Zaman, T.2
-
22
-
-
50249095629
-
New family of seventh-order methods for nonlinear equations
-
Bi W., Ren H., and Wu Q. New family of seventh-order methods for nonlinear equations. Appl. Math. Comput. 203 (2008) 408-412
-
(2008)
Appl. Math. Comput.
, vol.203
, pp. 408-412
-
-
Bi, W.1
Ren, H.2
Wu, Q.3
-
23
-
-
58549095239
-
Three-step iterative methods with eighth-order convergence for solving nonlinear equations
-
Bi W., Ren H., and Wu Q. Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 255 (2009) 105-112
-
(2009)
J. Comput. Appl. Math.
, vol.255
, pp. 105-112
-
-
Bi, W.1
Ren, H.2
Wu, Q.3
-
27
-
-
0036003394
-
Directional Newton methods in n variables
-
Levin Y., and Ben-Israel A. Directional Newton methods in n variables. Math. Comput. 71 (2002) 251-262
-
(2002)
Math. Comput.
, vol.71
, pp. 251-262
-
-
Levin, Y.1
Ben-Israel, A.2
-
28
-
-
67349241605
-
Broyden method for nonlinear equation in several variables
-
An H., and Bai Z. Broyden method for nonlinear equation in several variables. Math. Numer. Sinica. 26 (2004) 385-400
-
(2004)
Math. Numer. Sinica.
, vol.26
, pp. 385-400
-
-
An, H.1
Bai, Z.2
-
29
-
-
10644287811
-
Directional secant method for nonlinear equations
-
An H., and Bai Z. Directional secant method for nonlinear equations. J. Comput. Appl. Math. 175 (2005) 291-304
-
(2005)
J. Comput. Appl. Math.
, vol.175
, pp. 291-304
-
-
An, H.1
Bai, Z.2
-
30
-
-
0012466757
-
A variant of Newton's method with accelerated third-order convergence
-
Weerakoon S., and Fernando T.G.I. A variant of Newton's method with accelerated third-order convergence. Appl. Math. Lett. 13 (2000) 87-93
-
(2000)
Appl. Math. Lett.
, vol.13
, pp. 87-93
-
-
Weerakoon, S.1
Fernando, T.G.I.2
|