메뉴 건너뛰기




Volumn 15, Issue 1, 2011, Pages 29-47

A hybrid classification scheme for mining multisource geospatial data

Author keywords

EM; MLC; Semi supervised learning

Indexed keywords

DISTRIBUTED DATABASE SYSTEMS; IMAGE CLASSIFICATION; IMAGE ENHANCEMENT; LEARNING ALGORITHMS; LEARNING SYSTEMS; MAXIMUM LIKELIHOOD; MULTIVARIANT ANALYSIS; REMOTE SENSING; SAMPLING; SATELLITE IMAGERY; SEMI-SUPERVISED LEARNING;

EID: 78751575653     PISSN: 13846175     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10707-010-0113-4     Document Type: Article
Times cited : (15)

References (25)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Ando RK, Zhang T (2005) A framework for learning predictive structures from multiple tasks and unlabeled data. J Mach Learn Res 6: 1817-1853.
    • (2005) J Mach Learn Res , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 3
    • 0027042112 scopus 로고
    • Rule-based classification models: flexible integration of satellite imagery and thematic spatial data
    • Bolstad P, Lillesand T (1992) Rule-based classification models: flexible integration of satellite imagery and thematic spatial data. Photogramm Eng Remote Sensing 58(7): 965-971.
    • (1992) Photogramm Eng Remote Sensing , vol.58 , Issue.7 , pp. 965-971
    • Bolstad, P.1    Lillesand, T.2
  • 4
    • 0030618061 scopus 로고    scopus 로고
    • Multisource classification of complex rural areas by statistical and neural-network approaches
    • Bruzzone L, Conese C, Maselli F, Roli F (1997) Multisource classification of complex rural areas by statistical and neural-network approaches. Photogramm Eng Remote Sensing 63(5): 523-533.
    • (1997) Photogramm Eng Remote Sensing , vol.63 , Issue.5 , pp. 523-533
    • Bruzzone, L.1    Conese, C.2    Maselli, F.3    Roli, F.4
  • 7
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39(1): 1-38.
    • (1977) J R Stat Soc Ser B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.M.2    Rubin, D.B.3
  • 10
    • 0007950880 scopus 로고    scopus 로고
    • Enhancing supervised learning with unlabeled data
    • San Francisco: on machine learning. Morgan Kaufmann
    • Goldman S, Zhou Y (2000) Enhancing supervised learning with unlabeled data. In: Proc. 17th international conf. on machine learning. Morgan Kaufmann, San Francisco, pp 327-334.
    • (2000) Proc. 17th International Conf , pp. 327-334
    • Goldman, S.1    Zhou, Y.2
  • 12
    • 0026614837 scopus 로고
    • Inclusion of prior probabilities derived from a non-parametric process into the maximum likelihood classifier
    • Maselli F, Conese C, Petkov L, Resti R (1992) Inclusion of prior probabilities derived from a non-parametric process into the maximum likelihood classifier. Photogramm Eng Remote Sensing 58(2): 201-207.
    • (1992) Photogramm Eng Remote Sensing , vol.58 , Issue.2 , pp. 201-207
    • Maselli, F.1    Conese, C.2    Petkov, L.3    Resti, R.4
  • 15
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam K, McCallum AK, Thrun S, Mitchell TM (2000) Text classification from labeled and unlabeled documents using EM. Mach learn 39(2/3): 103-134.
    • (2000) Mach Learn , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.M.4
  • 16
    • 0030618062 scopus 로고    scopus 로고
    • The effect of neural-network structure on a multispectral land-use/land-cover classification
    • Paola JD, Schowengerdt RA (1997) The effect of neural-network structure on a multispectral land-use/land-cover classification. Photogramm Eng Remote Sensing 63(5): 535-544.
    • (1997) Photogramm Eng Remote Sensing , vol.63 , Issue.5 , pp. 535-544
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 17
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: recommendations for practitioners
    • Raudys SJ, Jain AK (1991) Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans Pattern Anal Mach Intell 13(3): 252-264.
    • (1991) IEEE Trans Pattern Anal Mach Intell , vol.13 , Issue.3 , pp. 252-264
    • Raudys, S.J.1    Jain, A.K.2
  • 19
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Shahshahani B, Landgrebe D (1994) The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Trans Geosci Remote Sens 32(5): 1087-1095.
    • (1994) IEEE Trans Geosci Remote Sens , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.1    Landgrebe, D.2
  • 20
    • 0024855910 scopus 로고
    • An expert system classifies eucalypt forest types using thematic mapper data and a digital terrain model
    • Skidmore A (1989) An expert system classifies eucalypt forest types using thematic mapper data and a digital terrain model. Photogramm Eng Remote Sensing 55(10): 1449-1464.
    • (1989) Photogramm Eng Remote Sensing , vol.55 , Issue.10 , pp. 1449-1464
    • Skidmore, A.1
  • 21
    • 0030613489 scopus 로고    scopus 로고
    • Performance of a neural network: mapping forest using GIS and remotely sensed data
    • Skidmore A, Turner B, Brinkhof W, Knowles E (1997) Performance of a neural network: mapping forest using GIS and remotely sensed data. Photogramm Eng Remote Sensing 63(5): 501-514.
    • (1997) Photogramm Eng Remote Sensing , vol.63 , Issue.5 , pp. 501-514
    • Skidmore, A.1    Turner, B.2    Brinkhof, W.3    Knowles, E.4
  • 22
    • 0000282893 scopus 로고    scopus 로고
    • Stabilizing classifiers for very small sample sizes
    • Los Alamitos: IEEE Computer Society
    • Skurichina M, Duin R (1996) Stabilizing classifiers for very small sample sizes. In: Proc. 10th int. conference on pattern recognition. IEEE Computer Society, Los Alamitos, pp 891-896.
    • (1996) Proc. 10th Int. Conference on Pattern Recognition , pp. 891-896
    • Skurichina, M.1    Duin, R.2
  • 23
    • 0019227654 scopus 로고
    • The use of prior probabilities in maximum likelihood classificaiton of remote sensing data
    • Strahler A (1980) The use of prior probabilities in maximum likelihood classificaiton of remote sensing data. Remote Sens Environ 10: 135-163.
    • (1980) Remote Sens Environ , vol.10 , pp. 135-163
    • Strahler, A.1
  • 24
    • 0032633354 scopus 로고    scopus 로고
    • Covariance estimation with limited training samples
    • Tadjudin S, Landgrebe DA (1999) Covariance estimation with limited training samples. IEEE Trans Geosci Remote Sens 37(4): 2113-2118.
    • (1999) IEEE Trans Geosci Remote Sens , vol.37 , Issue.4 , pp. 2113-2118
    • Tadjudin, S.1    Landgrebe, D.A.2
  • 25


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.