메뉴 건너뛰기




Volumn 29, Issue 3, 2010, Pages 382-390

On support sizes of restricted isometry constants

Author keywords

Compressed sensing; Restricted isometry constants; Restricted isometry property; Sparse approximation; Sparse signal recovery

Indexed keywords

APPROXIMATION ALGORITHMS; COMPRESSED SENSING; MATRIX ALGEBRA;

EID: 77955518394     PISSN: 10635203     EISSN: 1096603X     Source Type: Journal    
DOI: 10.1016/j.acha.2010.05.001     Document Type: Letter
Times cited : (16)

References (24)
  • 1
    • 79957444557 scopus 로고    scopus 로고
    • Compressed sensing: How sharp is the restricted isometry property?
    • in press
    • Jeffrey D. Blanchard, Coralia Cartis, Jared Tanner, Compressed sensing: How sharp is the restricted isometry property? SIAM Rev. (2010), in press
    • (2010) SIAM Rev.
    • Blanchard, J.D.1    Cartis, C.2    Tanner, J.3
  • 4
    • 69949164527 scopus 로고    scopus 로고
    • Iterative hard thresholding for compressed sensing
    • Thomas Blumensath, and Mike E. Davies Iterative hard thresholding for compressed sensing Appl. Comput. Harmon. Anal. 27 3 2009 265 274
    • (2009) Appl. Comput. Harmon. Anal. , vol.27 , Issue.3 , pp. 265-274
    • Blumensath, T.1    Davies, M.E.2
  • 5
    • 77955511602 scopus 로고    scopus 로고
    • Normalised iterative hard thresholding guaranteed stability and performance
    • in press
    • Thomas Blumensath, Mike E. Davies, Normalised iterative hard thresholding guaranteed stability and performance, IEEE J. Sel. Topics Signal Process. (2009), in press
    • (2009) IEEE J. Sel. Topics Signal Process
    • Blumensath, T.1    Davies, M.E.2
  • 7
    • 77955509952 scopus 로고    scopus 로고
    • Shifting inequality and recovery of sparse signals
    • T. Tony Cai, Lie Wang, and Guangwu Xu Shifting inequality and recovery of sparse signals IEEE Trans. Signal Process. 58 3 2010 1300 1308
    • (2010) IEEE Trans. Signal Process. , vol.58 , Issue.3 , pp. 1300-1308
    • Tony, C.T.1    Wang, L.2    Xu, G.3
  • 8
    • 84878104490 scopus 로고    scopus 로고
    • Compressive sampling
    • Eur. Math. Soc. Zürich
    • Emmanuel J. Candès Compressive sampling International Congress of Mathematicians vol. III 2006 Eur. Math. Soc. Zürich 1433 1452
    • (2006) International Congress of Mathematicians , vol.3 , pp. 1433-1452
    • Candès, E.J.1
  • 9
    • 42649140570 scopus 로고    scopus 로고
    • The restricted isometry property and its implications for compressed sensing
    • Emmanuel J. Candès The restricted isometry property and its implications for compressed sensing C. R. Math. Acad. Sci. Paris 346 9-10 2008 589 592
    • (2008) C. R. Math. Acad. Sci. Paris , vol.346 , Issue.910 , pp. 589-592
    • Candès, E.J.1
  • 10
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • Emmanuel J. Candès, Justin K. Romberg, and Terence Tao Stable signal recovery from incomplete and inaccurate measurements Comm. Pure Appl. Math. 59 8 2006 1207 1223
    • (2006) Comm. Pure Appl. Math. , vol.59 , Issue.8 , pp. 1207-1223
    • Candès, E.J.1    Romberg, J.K.2    Tao, T.3
  • 11
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • Emmanuel J. Candes, and Terence Tao Decoding by linear programming IEEE Trans. Inform. Theory 51 12 2005 4203 4215
    • (2005) IEEE Trans. Inform. Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candes, E.J.1    Tao, T.2
  • 12
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: Universal encoding strategies?
    • Emmanuel J. Candes, and Terence Tao Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory 52 12 2006 5406 5425
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.12 , pp. 5406-5425
    • Candes, E.J.1    Tao, T.2
  • 14
  • 15
    • 33744552752 scopus 로고    scopus 로고
    • For most large underdetermined systems of equations, the minimal l 1 -norm near-solution approximates the sparsest near-solution
    • David L. Donoho For most large underdetermined systems of equations, the minimal l 1 -norm near-solution approximates the sparsest near-solution Comm. Pure Appl. Math. 59 7 2006 907 934
    • (2006) Comm. Pure Appl. Math. , vol.59 , Issue.7 , pp. 907-934
    • Donoho, D.L.1
  • 16
    • 33646479497 scopus 로고    scopus 로고
    • High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension
    • David L. Donoho High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension Discrete Comput. Geom. 35 4 2006 617 652
    • (2006) Discrete Comput. Geom. , vol.35 , Issue.4 , pp. 617-652
    • Donoho, D.L.1
  • 18
    • 22144488449 scopus 로고    scopus 로고
    • Sparse nonnegative solutions of underdetermined linear equations by linear programming
    • David L. Donoho, and Jared Tanner Sparse nonnegative solutions of underdetermined linear equations by linear programming Proc. Natl. Acad. Sci. USA 102 27 2005 9446 9451
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , Issue.27 , pp. 9446-9451
    • Donoho, D.L.1    Tanner, J.2
  • 19
    • 55349134896 scopus 로고    scopus 로고
    • Fast solution of l1 minimization problems when the solution may be sparse
    • David L. Donoho, and Yaakov Tsaig Fast solution of l1 minimization problems when the solution may be sparse IEEE Trans. Inform. Theory 54 11 2008 4789 4812
    • (2008) IEEE Trans. Inform. Theory , vol.54 , Issue.11 , pp. 4789-4812
    • Donoho, D.L.1    Tsaig, Y.2
  • 22
    • 62749175137 scopus 로고    scopus 로고
    • Cosamp: Iterative signal recovery from incomplete and inaccurate samples
    • Deanna Needell, and Joel Tropp Cosamp: Iterative signal recovery from incomplete and inaccurate samples Appl. Comput. Harmon. Anal. 26 3 2009 301 321
    • (2009) Appl. Comput. Harmon. Anal. , vol.26 , Issue.3 , pp. 301-321
    • Needell, D.1    Tropp, J.2
  • 24
    • 77955275408 scopus 로고    scopus 로고
    • Sparse recovery by non-convex optimization-instance optimality
    • Ryan Saab, and Ozgur Yilmaz Sparse recovery by non-convex optimization-instance optimality Appl. Comput. Harmon. Anal. 29 1 2010 30 48
    • (2010) Appl. Comput. Harmon. Anal. , vol.29 , Issue.1 , pp. 30-48
    • Saab, R.1    Yilmaz, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.