메뉴 건너뛰기




Volumn 5, Issue 4, 2010, Pages 457-471

Anomaly network intrusion detection system based on distributed time-delay neural network (DTDNN)

Author keywords

Anomaly; Artificial neural network; Distributed time delay artificial neural network; Intrusion detection system

Indexed keywords


EID: 78751558599     PISSN: 18234690     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (52)

References (34)
  • 3
    • 13544269338 scopus 로고    scopus 로고
    • Application of SVM and ANN for intrusion detection
    • Chen, W.H.; Hsu, S.H.; and Shen, H.P. (2005). Application of SVM and ANN for intrusion detection. Computers & Operations Research, 32(10), 2617-2634.
    • (2005) Computers & Operations Research , vol.32 , Issue.10 , pp. 2617-2634
    • Chen, W.H.1    Hsu, S.H.2    Shen, H.P.3
  • 8
    • 33748100382 scopus 로고    scopus 로고
    • RT-UNNID: A practical solution to real-time network-based intrusion detection using unsupervised neural networks
    • Morteza, A.; Jalili, R.; and Hamid R.S. (2006). RT-UNNID: A practical solution to real-time network-based intrusion detection using unsupervised neural networks. Computers & Security, 25(6), 459-468.
    • (2006) Computers & Security , vol.25 , Issue.6 , pp. 459-468
    • Morteza, A.1    Jalili, R.2    Hamid, R.S.3
  • 12
    • 77952655476 scopus 로고    scopus 로고
    • DoS attacks intelligent detection using neural networks
    • Alfantookh, A.A. (2006). DoS attacks intelligent detection using neural networks. Comp. & Info. Sci., 18, 27-45.
    • (2006) Comp. & Info. Sci , vol.18 , pp. 27-45
    • Alfantookh, A.A.1
  • 15
    • 78751508584 scopus 로고    scopus 로고
    • An intelligent firewall to detect novel attacks? An integrated approach based on anomaly detection against virus attacks
    • Mária Bieliková (Ed.):, 2002
    • InSeon Y.; and Ulrich U. (2002). An intelligent firewall to detect novel attacks? An integrated approach based on anomaly detection against virus attacks, Mária Bieliková (Ed.): SOFSEM 2002 Student Research Forum, 59-64, 2002. http://www2.fiit.stuba.sk/~bielik/sofsem2002srf/clanky/09Yoo.pdf.
    • (2002) SOFSEM 2002 Student Research Forum , pp. 59-64
    • Inseon, Y.1    Ulrich, U.2
  • 16
    • 33745926508 scopus 로고    scopus 로고
    • A mutated intrusion detection system using principal component analysis and time delay neural network
    • Kang, B.D.; Lee, J.W; Kim, J.H.; Kwon, O.H.; Seong, C.Y.; Park, S.M.; and Kim, S.K. (2006). A mutated intrusion detection system using principal component analysis and time delay neural network. LNCS, 3973, 246-254.
    • (2006) LNCS , vol.3973 , pp. 246-254
    • Kang, B.D.1    Lee, J.W.2    Kim, J.H.3    Kwon, O.H.4    Seong, C.Y.5    Park, S.M.6    Kim, S.K.7
  • 17
    • 78751523544 scopus 로고    scopus 로고
    • Master's Thesis, University of Engineering & Technology, School of Computer Science, College of Engineering & Computer Science at the University of Central Florida
    • Siddiqui, M.A. (2004). High performance data mining techniques for intrusion detection. Master's Thesis, University of Engineering & Technology, School of Computer Science, College of Engineering & Computer Science at the University of Central Florida.
    • (2004) High Performance Data Mining Techniques for Intrusion Detection
    • Siddiqui, M.A.1
  • 18
    • 33745881331 scopus 로고    scopus 로고
    • Application of neural networks in network control and information security
    • Grediaga, A.; Ibarra, F.; García, F.; Ledesma, B.; and Brotons, F. (2006). Application of neural networks in network control and information security. LNCS, 3973, 208-213.
    • (2006) LNCS , vol.3973 , pp. 208-213
    • Grediaga, A.1    Ibarra, F.2    García, F.3    Ledesma, B.4    Brotons, F.5
  • 19
    • 78751498849 scopus 로고    scopus 로고
    • Comparison of BPL and RBF Network in intrusion detection system
    • Zhang, C.; Jiang, J.; and Kamel, M. (2004). Comparison of BPL and RBF Network in intrusion detection system. LNCS (LNAI), 2639, 460-470.
    • (2004) LNCS (LNAI) , vol.2639 , pp. 460-470
    • Zhang, C.1    Jiang, J.2    Kamel, M.3
  • 27
    • 35248842651 scopus 로고    scopus 로고
    • Detecting anomalous network traffic with self-organizing maps
    • Ramadas, M.; Ostermann, S.; and Tjaden, B. (2003). Detecting anomalous network traffic with self-organizing maps. LNCS, 2820, 36-54.
    • (2003) LNCS , vol.2820 , pp. 36-54
    • Ramadas, M.1    Ostermann, S.2    Tjaden, B.3
  • 30
    • 78751515813 scopus 로고    scopus 로고
    • 19.DARPA1998
    • 19.DARPA1998 http://www.ll.mit.edu/IST/ideval/docs/1998/introduction/index.htm.
  • 31
    • 78751510749 scopus 로고    scopus 로고
    • KDDCup1999
    • KDDCup1999: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
  • 32
    • 78751488559 scopus 로고    scopus 로고
    • MATLAB 7.6.0 (R2008a) neural network Toolbox software
    • MATLAB 7.6.0 (R2008a) neural network Toolbox software.
  • 34
    • 0242489523 scopus 로고    scopus 로고
    • Feature selection for intrusion detection using neural networks and support vector machines
    • Mukkamala, S.; and Sung, A.H. (2003). Feature selection for intrusion detection using neural networks and support vector machines. Transportation Research Record, 1822, 33-39.
    • (2003) Transportation Research Record , vol.1822 , pp. 33-39
    • Mukkamala, S.1    Sung, A.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.