메뉴 건너뛰기




Volumn 1, Issue 1, 2009, Pages 25-32

Massive datasets

Author keywords

[No Author keywords available]

Indexed keywords

BACKGROUND INFORMATION; DATA SETS; INTERDISCIPLINARY TEAMWORK; MASSIVE DATA SETS; STANDARD STATISTICAL ANALYSIS; STATISTICAL STRATEGIES;

EID: 78651583275     PISSN: 19395108     EISSN: 19390068     Source Type: Journal    
DOI: 10.1002/wics.15     Document Type: Review
Times cited : (9)

References (43)
  • 1
    • 22444452861 scopus 로고    scopus 로고
    • Extracting information from megapanels and high-frequency data
    • Granger CWJ. Extracting information from megapanels and high-frequency data. Stat Neerl 1998, 52: 258-272.
    • (1998) Stat Neerl , vol.52 , pp. 258-272
    • Granger, C.W.J.1
  • 2
    • 78651572601 scopus 로고    scopus 로고
    • Introduction
    • Unwin A, Theus M, Hofmann H, eds. New York: Springer
    • Unwin A. Introduction. In: Unwin A, Theus M, Hofmann H, eds. Graphics of Large Datasets. New York: Springer; 2006, 1-27.
    • (2006) Graphics of Large Datasets , pp. 1-27
    • Unwin, A.1
  • 3
    • 0011940116 scopus 로고
    • Robust methods-some examples of their use
    • Mallows CL. Robust methods-some examples of their use. Amer Statist 1979, 33: 179-184.
    • (1979) Amer Statist , vol.33 , pp. 179-184
    • Mallows, C.L.1
  • 4
    • 0035297746 scopus 로고    scopus 로고
    • The role of statistics in the data revolution?
    • 4. Friedman JH. The role of statistics in the data revolution? Int Statist Rev 2001, 69: 5-10. (Pubitemid 33255448)
    • (2001) International Statistical Review , vol.69 , Issue.1 , pp. 5-10
    • Friedman, J.H.1
  • 5
    • 34548074170 scopus 로고    scopus 로고
    • Embracing statistical challenges in the information technology age
    • DOI 10.1198/004017007000000254
    • 5. Yu B. Embracing statistical challenges in the information technology age. Technometrics 2007, 49: 237-248. (Pubitemid 47292483)
    • (2007) Technometrics , vol.49 , Issue.3 , pp. 237-248
    • Yu, B.1
  • 6
    • 78651534075 scopus 로고    scopus 로고
    • Massive data sets
    • Committee on Applied and Theoretical Statistics, National Research Council. Washington, DC: National Academy Press
    • Committee on Applied and Theoretical Statistics, National Research Council. Massive data sets. Proceedings of a Workshop. Washington, DC: National Academy Press; 1996.
    • (1996) Proceedings of A Workshop
  • 7
    • 85011525766 scopus 로고    scopus 로고
    • Introduction to the special section on massive datasets
    • Buja A, Keller-McNulty S. Introduction to the special section on massive datasets. J Comp Graph Statist 1999, 8: 544.
    • (1999) J Comp Graph Statist , vol.8 , pp. 544
    • Buja, A.1    Keller-McNulty, S.2
  • 8
    • 78651530659 scopus 로고    scopus 로고
    • Statistical analysis of massive data streams
    • Committee on Applied and Theoretical Statistics, National Research Council. Washington, DC: National Academy Press
    • Committee on Applied and Theoretical Statistics, National Research Council. Statistical analysis of massive data streams. Proceedings of a Workshop. Washington, DC: National Academy Press; 2004.
    • (2004) Proceedings of A Workshop
  • 9
    • 0033245954 scopus 로고    scopus 로고
    • Massive datasets workshop: Four years after
    • Huber PJ. Massive datasets workshop: four years after. J Comp Graph Statist 1999, 8: 635-652.
    • (1999) J Comp Graph Statist , vol.8 , pp. 635-652
    • Huber, P.J.1
  • 10
    • 21844482549 scopus 로고
    • Huge data sets and the frontiers of computational feasibility
    • Wegman EJ. Huge data sets and the frontiers of computational feasibility. J Comp Graph Statist 1995, 4: 281-295.
    • (1995) J Comp Graph Statist , vol.4 , pp. 281-295
    • Wegman, E.J.1
  • 12
    • 78651589651 scopus 로고    scopus 로고
    • Understanding large-scale structure in massive data sets
    • Melnick E, Everitt B, eds. Chichester, UK: Wiley
    • Braverman A. Understanding large-scale structure in massive data sets. In: Melnick E, Everitt B, eds. Encyclopedia of Quantitative Risk Assessment. Chichester, UK: Wiley; 2008.
    • (2008) Encyclopedia of Quantitative Risk Assessment
    • Braverman, A.1
  • 13
    • 0042421807 scopus 로고    scopus 로고
    • Statistical fraud detection: A review
    • Bolton RJ, Hand D. Statistical fraud detection: a review. Statist Sci 2002, 17: 235-255.
    • (2002) Statist Sci , vol.17 , pp. 235-255
    • Bolton, R.J.1    Hand, D.2
  • 14
    • 16344383315 scopus 로고    scopus 로고
    • Sampling for passive Internet measurement: A review
    • DOI 10.1214/088342304000000206
    • 14. Duffield N. Sampling for passive internet measurement: a review. Statist Sci 2004, 19: 472-498. (Pubitemid 40472647)
    • (2004) Statistical Science , vol.19 , Issue.3 , pp. 472-498
    • Duffield, N.1
  • 15
    • 0035968430 scopus 로고    scopus 로고
    • Neuroscience databases: Tools for exploring brain structure-function relationships
    • DOI 10.1098/rstb.2001.0902
    • 15. Kötter R. Neuroscience databases: tools for exploring brain structure-function relationships. Phil Trans R Soc Lond B 2001, 356: 1111-1120. (Pubitemid 32882032)
    • (2001) Philosophical Transactions of the Royal Society B: Biological Sciences , vol.356 , Issue.1412 , pp. 1111-1120
    • Kotter, R.1
  • 17
    • 0742288965 scopus 로고    scopus 로고
    • Statistical challenges with massive datasets in particle physics
    • DOI 10.1198/1061860032599, Statistical Analysis of Massive Data Streams
    • 17. Knuteson B, Padley P. Statistical challenges with massive datasets in particle physics. J Comp Graph Statist 2003, 12: 808-828. (Pubitemid 38148590)
    • (2003) Journal of Computational and Graphical Statistics , vol.12 , Issue.4 , pp. 808-828
    • Knuteson, B.1    Padley, P.2
  • 18
    • 78651531454 scopus 로고    scopus 로고
    • Massive data sets
    • Committee on Applied and Theoretical Statistics, Dumais S. Information retrieval: finding needles in massive haystacks. Washington, DC: National Academy Press
    • Committee on Applied and Theoretical Statistics, Dumais S. Information retrieval: finding needles in massive haystacks. Massive Data Sets. Proceedings of a workshop. Washington, DC: National Academy Press; 1996, 23-32.
    • (1996) Proceedings of a Workshop , pp. 23-32
  • 19
    • 34247395877 scopus 로고    scopus 로고
    • Advanced learning algorithms for cross-language patent retrieval and classification
    • DOI 10.1016/j.ipm.2006.11.005, PII S0306457306002032
    • 19. Li Y, Shawe-Taylor J. Advanced learning algorithms for cross-language patent retrieval and classification. Inf Process Manag 2007, 43: 1183-1199. (Pubitemid 46636026)
    • (2007) Information Processing and Management , vol.43 , Issue.5 , pp. 1183-1199
    • Li, Y.1    Shawe-Taylor, J.2
  • 21
    • 78651560841 scopus 로고    scopus 로고
    • Mining the sky: Data analysis meets astronomy
    • 8-9
    • Kamath C. Mining the sky: data analysis meets astronomy. SIAM News 2002, 35(3): 1, 8-9.
    • (2002) SIAM News , vol.35 , Issue.3 , pp. 1
    • Kamath, C.1
  • 24
    • 11244326960 scopus 로고    scopus 로고
    • Clustering visualizations of multidimensional data
    • Hurley CB. Clustering visualizations of multidimensional data. J Comp Graph Statist 2004, 13: 788-806.
    • (2004) J Comp Graph Statist , vol.13 , pp. 788-806
    • Hurley, C.B.1
  • 25
    • 0003219164 scopus 로고
    • Data-driven view selection; agglomeration and sharpening
    • Barnett V, ed. Chichester, UK: Wiley
    • Tukey PA, Tukey JW. Data-driven view selection; agglomeration and sharpening. In: Barnett V, ed. Interpreting Multivariate Data. Chichester, UK: Wiley; 1981, 215-243.
    • (1981) Interpreting Multivariate Data. , pp. 215-243
    • Tukey, P.A.1    Tukey, J.W.2
  • 27
    • 34548089314 scopus 로고    scopus 로고
    • Graphics of a large dataset
    • Unwin A, Theus M, Hofmann H, eds. New York: Springer
    • Unwin A, Theus M. Graphics of a large dataset. In: Unwin A, Theus M, Hofmann H, eds. Graphics of Large Datasets. New York: Springer; 2006, 227-249.
    • (2006) Graphics of Large Datasets , pp. 227-249
    • Unwin, A.1    Theus, M.2
  • 29
    • 16344384142 scopus 로고    scopus 로고
    • Data squashing: Constructing summary data sets
    • Abello J, Pardalos PM, Resende MGC, eds. Boston: Kluwer
    • DuMouchel W. Data squashing: constructing summary data sets. In: Abello J, Pardalos PM, Resende MGC, eds. Handbook of Massive Data Sets. Boston: Kluwer; 2002, 579-591.
    • (2002) Handbook of Massive Data Sets , pp. 579-591
    • Dumouchel, W.1
  • 31
    • 0036004138 scopus 로고    scopus 로고
    • Compressing massive geophysical datasets using vector quantization
    • Braverman A. Compressing massive geophysical datasets using vector quantization. J Comp Graph Statist 2002, 11: 44-62.
    • (2002) J Comp Graph Statist , vol.11 , pp. 44-62
    • Braverman, A.1
  • 32
    • 33746257145 scopus 로고    scopus 로고
    • The practice of cluster analysis
    • Kettenring JR. The practice of cluster analysis. J Classif 2006, 23: 3-30.
    • (2006) J Classif , vol.23 , pp. 3-30
    • Kettenring, J.R.1
  • 34
    • 34748835594 scopus 로고    scopus 로고
    • Clustering very large data sets with principal direction divisive partitioning
    • Kogan J, Nicholas C, Teboulle M, eds. New York: Springer
    • Littau D, Boley D. Clustering very large data sets with principal direction divisive partitioning. In: Kogan J, Nicholas C, Teboulle M, eds. Grouping Multidimensional Data: Recent Advances in Clustering. New York: Springer; 2006, 99-126.
    • (2006) Grouping Multidimensional Data: Recent Advances in Clustering , pp. 99-126
    • Littau, D.1    Boley, D.2
  • 35
    • 0035420381 scopus 로고    scopus 로고
    • Clustering massive datasets with applications in software metrics and tomography
    • Maitra R. Clustering massive datasets with applications in software metrics and tomography. Technometrics 2001, 43: 336-346.
    • (2001) Technometrics , vol.43 , pp. 336-346
    • Maitra, R.1
  • 36
    • 78651562744 scopus 로고    scopus 로고
    • Approximate models
    • Huber-Carol C, Balakrishnan N, Nikulin MS, Mesbah M, eds. Boston: Birkhauser
    • Huber PJ. Approximate models. In: Huber-Carol C, Balakrishnan N, Nikulin MS, Mesbah M, eds. Goodness-of-Fit Tests and Model Validity. Boston: Birkhauser; 2002, 25-41.
    • (2002) Goodness-of-Fit Tests and Model Validity. , pp. 25-41
    • Huber, P.J.1
  • 37
    • 33845678003 scopus 로고    scopus 로고
    • Regularization in statistics
    • Bickel PJ, Li B. Regularization in statistics. Test 2006, 15: 271-344.
    • (2006) Test , vol.15 , pp. 271-344
    • Bickel, P.J.1    Li, B.2
  • 39
    • 41549108812 scopus 로고    scopus 로고
    • Algorithms for sparse linear classifiers in the massive data setting
    • Balakrishnan S, Madigan D. Algorithms for sparse linear classifiers in the massive data setting. J Mach Learn Res 2008, 9: 313-337.
    • (2008) J Mach Learn Res , vol.9 , pp. 313-337
    • Balakrishnan, S.1    Madigan, D.2
  • 41
    • 0033245953 scopus 로고    scopus 로고
    • Cataloging and mining massive datasets for science data analysis
    • Fayyad UM, Smyth P. Cataloging and mining massive datasets for science data analysis. J Comp Graph Statist 1999; 8; 589-610.
    • (1999) J Comp Graph Statist , vol.8 , pp. 589-610
    • Fayyad, U.M.1    Smyth, P.2
  • 42


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.