메뉴 건너뛰기




Volumn , Issue , 2010, Pages 370-375

Protein secondary structure prediction using knowledge-based potentials

Author keywords

Extreme learning machine; Neural networks; Particle swarm optimization; Protein secondary structure prediction

Indexed keywords

AMINO ACID SEQUENCE; CLASSIFIER PERFORMANCE; EXTREME LEARNING MACHINE; NOVEL METHODS; PARTICLE SWARM; PARTICLE SWARM OPTIMIZATION ALGORITHM; PROTEIN SECONDARY STRUCTURE; PROTEIN SECONDARY STRUCTURE PREDICTION; PROTEIN STRUCTURES;

EID: 78651434012     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1)

References (26)
  • 1
    • 0030801002 scopus 로고    scopus 로고
    • Gapped BLAST and PSI-BLAST: A new generation of protein database search programs
    • Altschul, S., Madden, T., and Scharfer, A., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res, 25, 3389-3402.
    • (1997) Nucl Acids Res , vol.25 , pp. 3389-3402
    • Altschul, S.1    Madden, T.2    Scharfer, A.3
  • 2
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm explosion, stability, and convergence in a multidimensional complex space
    • Clerc, M. K. and Kennedy, J., 2002. The particle swarm explosion, stability, and convergence in a multidimensional complex space. IEEE Trans olutionary Comput, 6 (1) 58-73.
    • (2002) IEEE Trans Olutionary Comput , vol.6 , Issue.1 , pp. 58-73
    • Clerc, M.K.1    Kennedy, J.2
  • 3
    • 0015987426 scopus 로고
    • Prediction of protein conformation
    • Chou, P. Y. and Fasman, G. D., 1974. Prediction of protein conformation. Biochemistry, 13(2), 222-245.
    • (1974) Biochemistry , vol.13 , Issue.2 , pp. 222-245
    • Chou, P.Y.1    Fasman, G.D.2
  • 4
    • 48449106792 scopus 로고    scopus 로고
    • The Jpred 3 secondary structure prediction server
    • Web Server issue
    • Cole, C., Barber, J. D., and Barton , G. J., 2008. The Jpred 3 secondary structure prediction server. Nucleic Acids Research, 36 (Web Server issue): W197-W201.
    • (2008) Nucleic Acids Research , vol.36
    • Cole, C.1    Barber, J.D.2    Barton, G.J.3
  • 5
    • 0034663597 scopus 로고    scopus 로고
    • Application of multiple sequence alignment profiles to improve protein secondary structure prediction
    • Cuff, J. A. and Barton, G. J., 2000. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins, 40(3), 502-511.
    • (2000) Proteins , vol.40 , Issue.3 , pp. 502-511
    • Cuff, J.A.1    Barton, G.J.2
  • 6
    • 33847073796 scopus 로고    scopus 로고
    • Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training
    • Dor, O. and Zhou, Y., 2007. Achieving 80% Ten-fold Cross-validated Accuracy for Secondary Structure Prediction by Large-scale Training. PROTEINS: Structure, Function, and Bioinformatics, 66, 838-845.
    • (2007) PROTEINS: Structure, Function, and Bioinformatics , vol.66 , pp. 838-845
    • Dor, O.1    Zhou, Y.2
  • 7
    • 0017873321 scopus 로고
    • Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins
    • Garnier, J., Osguthorpe, D. J. and Robson, B., 1978. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol, 1, 97-120.
    • (1978) J Mol Biol , vol.1 , pp. 97-120
    • Garnier, J.1    Osguthorpe, D.J.2    Robson, B.3
  • 8
    • 0029884694 scopus 로고    scopus 로고
    • GOR secondary structure prediction method version IV
    • Garnier, J., Gibrat, J. F, and Robson, B., 1996. GOR secondary structure prediction method version IV. Methods Enzymol, 226, 540-553.
    • (1996) Methods Enzymol , vol.226 , pp. 540-553
    • Garnier, J.1    Gibrat, J.F.2    Robson, B.3
  • 9
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang, G. B., Zhu, Q. Y., and Siew, C. K., 2006. Extreme learning machine: Theory and applications. Neurocomputing, 70(1-3), 489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 10
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones, D., 1999. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol, 292, 195-202.
    • (1999) J Mol Biol , vol.292 , pp. 195-202
    • Jones, D.1
  • 11
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: Pattern recognition of hydrogenbonded and geometrical features
    • Kabsch, W. and Sander, C., 1983. Dictionary of protein secondary structure: pattern recognition of hydrogenbonded and geometrical features. Biopolymers, 22(12), 2577-2637.
    • (1983) Biopolymers , vol.22 , Issue.12 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 12
    • 23644456329 scopus 로고    scopus 로고
    • The effect of long-range interactions on the secondary structure formation of proteins
    • Kihara, D., 2005. The effect of long-range interactions on the secondary structure formation of proteins. Prot Sci., 14(8), 1955-1963.
    • (2005) Prot Sci. , vol.14 , Issue.8 , pp. 1955-1963
    • Kihara, D.1
  • 13
    • 0141593924 scopus 로고    scopus 로고
    • Protein Secondary Structure Prediction Based on an Improved Support Vector Machines Approach
    • Kim, H. and Park, H., 2003. Protein Secondary Structure Prediction Based on an Improved Support Vector Machines Approach. Protein Eng, 16, 553-560.
    • (2003) Protein Eng , vol.16 , pp. 553-560
    • Kim, H.1    Park, H.2
  • 14
    • 0036836642 scopus 로고    scopus 로고
    • Combining the GOR v algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence
    • Kloczkowski, A., Ting, K. L., Jernigan, R. L., and Gamier, J., 2002. Combining the GOR V algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence. Proteins, 49, 154-166.
    • (2002) Proteins , vol.49 , pp. 154-166
    • Kloczkowski, A.1    Ting, K.L.2    Jernigan, R.L.3    Gamier, J.4
  • 15
    • 3242779291 scopus 로고    scopus 로고
    • Protein modeling and structure prediction with a reduced representation
    • Kolinski A., 2004. Protein modeling and structure prediction with a reduced representation. Acta Biochim Pol, 51, 349-371.
    • (2004) Acta Biochim Pol , vol.51 , pp. 349-371
    • Kolinski, A.1
  • 16
  • 17
    • 33747586510 scopus 로고    scopus 로고
    • Improving the accuracy of protein secondary structure prediction using structural alignment
    • Montgomerie, S., Sundaraj, S., Gallin W., and Wishart, D., 2006. Improving the Accuracy of Protein Secondary Structure Prediction Using Structural Alignment. BMC Bioinformatics, 7, 301.
    • (2006) BMC Bioinformatics , vol.7 , pp. 301
    • Montgomerie, S.1    Sundaraj, S.2    Gallin, W.3    Wishart, D.4
  • 19
    • 34547127137 scopus 로고    scopus 로고
    • Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information
    • Pollastri, G., Martin, A., Mooney, C. and Vullo, A., 2007. Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information. BMC Bioinformatics, 8(1), 201.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 201
    • Pollastri, G.1    Martin, A.2    Mooney, C.3    Vullo, A.4
  • 20
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • Qian, N. and Sejnowski, T. J., 1988. Predicting the secondary structure of globular proteins using neural network models. J Mol Biol, 202, 865-884.
    • (1988) J Mol Biol , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 21
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • Rost, B. and Sander, C., 1993. Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol., 232, 584-599.
    • (1993) J. Mol. Biol. , vol.232 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 22
    • 0035782925 scopus 로고    scopus 로고
    • Review: Protein secondary structure prediction continues to rise
    • Rost, B., 2001. Review: Protein Secondary Structure Prediction Continues to Rise. J Struct Bio, 134, (2-3), 204-218.
    • (2001) J Struct Bio , vol.134 , Issue.2-3 , pp. 204-218
    • Rost, B.1
  • 23
    • 3242885293 scopus 로고    scopus 로고
    • The predictprotein server
    • Web Server issue
    • Rost, B., Yachdav, G. and Liu, J., 2004. The PredictProtein Server, Nucl Acids Res, 32, Web Server issue, W321-W326.
    • (2004) Nucl Acids Res , vol.32
    • Rost, B.1    Yachdav, G.2    Liu, J.3
  • 24
    • 79551661137 scopus 로고    scopus 로고
    • ICGA-PSO-ELM approach for Accurate Cancer Classification Resulting in Reduced Gene Sets Involved in Cellular Interface with the Microenvironment
    • Saraswathi, S., Suresh, S., Sundararajan, N., Zimmerman, M. and Nilsen-Hamilton, M., 2010. ICGA-PSO-ELM approach for Accurate Cancer Classification Resulting in Reduced Gene Sets Involved in Cellular Interface with the Microenvironment. IEEE Transactions in Bioinformatics and Computational Biology, http://www.computer.org/portal/web/csdl/doi/10.1109/TCBB.2010.13.
    • (2010) IEEE Transactions in Bioinformatics and Computational Biology
    • Saraswathi, S.1    Suresh, S.2    Sundararajan, N.3    Zimmerman, M.4    Nilsen-Hamilton, M.5
  • 25
    • 0141738785 scopus 로고    scopus 로고
    • Secondary structure prediction with support vector machines
    • Ward, J. J., McGuffin, L. J., Buxton, B. F. and Jones, D. T., 2003. Secondary structure prediction with support vector machines. Bioinformatics, 19(13), 1650-1655.
    • (2003) Bioinformatics , vol.19 , Issue.13 , pp. 1650-1655
    • Ward, J.J.1    McGuffin, L.J.2    Buxton, B.F.3    Jones, D.T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.