메뉴 건너뛰기




Volumn 82, Issue 6, 2010, Pages

Robust algorithm to generate a diverse class of dense disordered and ordered sphere packings via linear programming

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COSTS; DENSE PACKING; DETERMINISTIC ALGORITHMS; EUCLIDEAN SPACES; HIGH PROBABILITY; INHERENT STRUCTURES; JAMMED PACKINGS; LOW DENSITY; MAXIMALLY RANDOM JAMMED STATE; MECHANICALLY STABLE; NONSPHERICAL PARTICLE; OBJECTIVE FUNCTIONS; OPTIMIZATION PROBLEMS; PACKING ALGORITHMS; PACKING DENSITY; PERIODIC BOUNDARY CONDITIONS; ROBUST ALGORITHM; SPACE DIMENSIONS; SPHERE PACKINGS; THREE DIMENSIONS; WIDE SPECTRUM;

EID: 78651434001     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.82.061302     Document Type: Article
Times cited : (111)

References (65)
  • 5
    • 77951113195 scopus 로고    scopus 로고
    • 10.1103/RevModPhys.82.789
    • G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789 (2010). 10.1103/RevModPhys.82.789
    • (2010) Rev. Mod. Phys. , vol.82 , pp. 789
    • Parisi, G.1    Zamponi, F.2
  • 12
    • 0004285533 scopus 로고
    • edited by A. Mehta (Springer, New York
    • Granular Matter, edited by, A. Mehta, (Springer, New York, 1994).
    • (1994) Granular Matter
  • 14
    • 0035828703 scopus 로고    scopus 로고
    • 10.1016/S0009-2509(01)00157-9
    • S. F. Edwards and D. V. Grinev, Chem. Eng. Sci. 56, 5451 (2001). 10.1016/S0009-2509(01)00157-9
    • (2001) Chem. Eng. Sci. , vol.56 , pp. 5451
    • Edwards, S.F.1    Grinev, D.V.2
  • 18
    • 33646345340 scopus 로고    scopus 로고
    • 10.1016/j.mechmat.2005.06.025
    • T. I. Zohdi, Mech. Mater. 38, 969 (2006). 10.1016/j.mechmat.2005.06.025
    • (2006) Mech. Mater. , vol.38 , pp. 969
    • Zohdi, T.I.1
  • 20
    • 77957009094 scopus 로고    scopus 로고
    • 10.1146/annurev-matsci-070909-104517
    • S. Torquato, Annu. Rev. Mater. Res. 40, 101 (2010). 10.1146/annurev- matsci-070909-104517
    • (2010) Annu. Rev. Mater. Res. , vol.40 , pp. 101
    • Torquato, S.1
  • 21
  • 26
    • 0001363431 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.60.2942
    • H. L. Frisch and J. K. Percus, Phys. Rev. E 60, 2942 (1999). 10.1103/PhysRevE.60.2942
    • (1999) Phys. Rev. e , vol.60 , pp. 2942
    • Frisch, H.L.1    Percus, J.K.2
  • 27
    • 0034316993 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.62.6554
    • G. Parisi and F. Slanina, Phys. Rev. E 62, 6554 (2000). 10.1103/PhysRevE.62.6554
    • (2000) Phys. Rev. e , vol.62 , pp. 6554
    • Parisi, G.1    Slanina, F.2
  • 28
  • 32
    • 0037769863 scopus 로고    scopus 로고
    • 10.4007/annals.2003.157.689
    • H. Cohn and N. Elkies, Ann. Math. 157, 689 (2003). 10.4007/annals.2003. 157.689
    • (2003) Ann. Math. , vol.157 , pp. 689
    • Cohn, H.1    Elkies, N.2
  • 33
    • 71649112588 scopus 로고    scopus 로고
    • 10.4007/annals.2009.170.1003
    • H. Cohn and A. Kumar, Ann. Math. 170, 1003 (2009). 10.4007/annals.2009. 170.1003
    • (2009) Ann. Math. , vol.170 , pp. 1003
    • Cohn, H.1    Kumar, A.2
  • 35
    • 22044441063 scopus 로고    scopus 로고
    • 10.4007/annals.2005.162.1065
    • T. C. Hales, Ann. Math. 162, 1065 (2005). 10.4007/annals.2005.162.1065
    • (2005) Ann. Math. , vol.162 , pp. 1065
    • Hales, T.C.1
  • 45
    • 78651418406 scopus 로고    scopus 로고
    • The sphere expansion rate γ is defined as γ= 1 D dD dt, where D is the diameter of the sphere.
    • The sphere expansion rate γ is defined as γ = 1 D d D d t, where D is the diameter of the sphere.
  • 47
    • 78651457914 scopus 로고    scopus 로고
    • In Ref., it was shown that jammed packings with a very narrow density distribution centered at any over a wide range ∈ [0.6,0.7408... ] with variable disorder can be generated in three dimensions. These results as well as those reported here support the view that there is no universal jamming point that is distinguishable based on the packing density alone and occurrence frequency. These results stress the importance of the "geometric- structure" approach to analyzing packing problems. In Ref., the SLP algorithm was employed to produce disordered jammed sphere packings in three dimensions with anomalously low densities. However, the algorithmic details of the SLP solution were not provided in that paper. Here we also use the SLP algorithm to generate disordered jammed sphere packings with anomalously low densities but using only initial conditions produced by the SLP algorithm. Additional details are provided in Sec. .
    • In Ref., it was shown that jammed packings with a very narrow density distribution centered at any over a wide range ∈ [0.6,0.7408... ] with variable disorder can be generated in three dimensions. These results as well as those reported here support the view that there is no universal jamming point that is distinguishable based on the packing density alone and occurrence frequency. These results stress the importance of the "geometric- structure" approach to analyzing packing problems. In Ref., the SLP algorithm was employed to produce disordered jammed sphere packings in three dimensions with anomalously low densities. However, the algorithmic details of the SLP solution were not provided in that paper. Here we also use the SLP algorithm to generate disordered jammed sphere packings with anomalously low densities but using only initial conditions produced by the SLP algorithm. Additional details are provided in Sec..
  • 48
    • 70350075655 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.80.041104;
    • S. Torquato and Y. Jiao, Phys. Rev. E 80, 041104 (2009) 10.1103/PhysRevE.80.041104
    • (2009) Phys. Rev. e , vol.80 , pp. 041104
    • Torquato, S.1    Jiao, Y.2
  • 50
    • 78651416321 scopus 로고    scopus 로고
    • In practice, the relative coordinates (rather than the global coordinates) are used in the algorithm due to the changing sphere positions with respect to the adaptive fundamental cell. Note that the terminology "global" coordinate was not explicitly used in Ref., even though the equations for the global positions of particle centers were explicitly given.
    • In practice, the relative coordinates (rather than the global coordinates) are used in the algorithm due to the changing sphere positions with respect to the adaptive fundamental cell. Note that the terminology "global" coordinate was not explicitly used in Ref., even though the equations for the global positions of particle centers were explicitly given.
  • 55
    • 0042091834 scopus 로고
    • 10.1126/science.225.4666.983In these papers, the concept of inherent structures was formalized for many-particle system interacting via continuous soft potentials. The set of configurational points that map to the same mechanically stable local energy minimum via a steepest-descent trajectory define uniquely a basin associated with the local minimum called an inherent structure.
    • F. H. Stillinger and T. A. Weber, Science 225, 983 (1984). 10.1126/science.225.4666.983
    • (1984) Science , vol.225 , pp. 983
    • Stillinger, F.H.1    Weber, T.A.2
  • 56
    • 36549097988 scopus 로고
    • 10.1063/1.449840In this paper, the concept of inherent structures was rigorously generalized to hard-sphere systems by considering the infinite- n limit of purely repulsive power-law pair potentials 1/ rn.
    • F. H. Stillinger and T. A. Weber, J. Chem. Phys. 83, 4767 (1985). 10.1063/1.449840
    • (1985) J. Chem. Phys. , vol.83 , pp. 4767
    • Stillinger, F.H.1    Weber, T.A.2
  • 58
    • 78651431565 scopus 로고    scopus 로고
    • A packing is isostatic if it possesses the minimal number of contacts for a particular jamming category. In large-packing limit, this implies that the average contact per particle in a strictly jammed packing is equal to 2d, where d is the spatial dimension.
    • A packing is isostatic if it possesses the minimal number of contacts for a particular jamming category. In large-packing limit, this implies that the average contact per particle in a strictly jammed packing is equal to 2 d, where d is the spatial dimension.
  • 59
    • 0000888353 scopus 로고
    • 10.1006/jcph.1994.1168
    • A. Zinchenko, J. Comput. Phys. 114, 298 (1994). 10.1006/jcph.1994.1168
    • (1994) J. Comput. Phys. , vol.114 , pp. 298
    • Zinchenko, A.1
  • 62
    • 78651360972 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.82.056707
    • Y. Kallus and V. Elser, and S. Gravel, Phys. Rev. E 82, 056707 (2010). 10.1103/PhysRevE.82.056707
    • (2010) Phys. Rev. e , vol.82 , pp. 056707
    • Kallus, Y.1    Elser, V.2    Gravel, S.3
  • 63
    • 78651423435 scopus 로고    scopus 로고
    • SLP =0.194, which indicate that the packings virtually have the same degree of disorder.
    • S L P = 0.194, which indicate that the packings virtually have the same degree of disorder.
  • 64
  • 65
    • 62249160654 scopus 로고    scopus 로고
    • 10.1039/b814211b
    • S. Torquato, Soft Matter 5, 1157 (2009). 10.1039/b814211b
    • (2009) Soft Matter , vol.5 , pp. 1157
    • Torquato, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.