-
5
-
-
0033883075
-
-
10.1016/S0020-7683(99)00103-1;
-
S. Torquato, Int. J. Solids Struct. 37, 411 (2000) 10.1016/S0020-7683(99) 00103-1
-
(2000)
Int. J. Solids Struct.
, vol.37
, pp. 411
-
-
Torquato, S.1
-
8
-
-
0004285533
-
-
edited by A. Mehta (Springer, New York
-
S. F. Edwards, in Granular Matter, edited by, A. Mehta, (Springer, New York, 1994).
-
(1994)
Granular Matter
-
-
Edwards, S.F.1
-
10
-
-
0034901412
-
-
10.1016/S0006-3495(01)75739-6
-
J. Liang and K. A. Dill, Biophys. J. 81, 751 (2001). 10.1016/S0006- 3495(01)75739-6
-
(2001)
Biophys. J.
, vol.81
, pp. 751
-
-
Liang, J.1
Dill, K.A.2
-
12
-
-
0003643241
-
-
Springer, New York
-
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices, and Groups (Springer, New York, 1987).
-
(1987)
Sphere Packings, Lattices, and Groups
-
-
Conway, J.H.1
Sloane, N.J.A.2
-
21
-
-
46349092282
-
-
10.1007/s10955-008-9539-6
-
G. Parisi, J. Stat. Phys. 132, 207 (2008). 10.1007/s10955-008-9539-6
-
(2008)
J. Stat. Phys.
, vol.132
, pp. 207
-
-
Parisi, G.1
-
23
-
-
66049122287
-
-
Supramolecular chemistry deals with the chemistry and collective behavior of molecular building blocks that are organized on large length scales (relative to molecular sizes) with long-range order.
-
Supramolecular chemistry deals with the chemistry and collective behavior of molecular building blocks that are organized on large length scales (relative to molecular sizes) with long-range order.
-
-
-
-
25
-
-
3442898175
-
-
10.1103/PhysRevLett.92.255506
-
A. Donev, F. H. Stillinger, P. M. Chaikin, and S. Torquato, Phys. Rev. Lett. 92, 255506 (2004). 10.1103/PhysRevLett.92.255506
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 255506
-
-
Donev, A.1
Stillinger, F.H.2
Chaikin, P.M.3
Torquato, S.4
-
28
-
-
52549094495
-
-
10.1007/s00454-008-9101-y
-
E. R. Chen, Discrete Comput. Geom. 40, 214 (2008). 10.1007/s00454-008- 9101-y
-
(2008)
Discrete Comput. Geom.
, vol.40
, pp. 214
-
-
Chen, E.R.1
-
29
-
-
66049155474
-
-
It is highly likely that the largest density of tetrahedral packings reported in Ref. can be improved.
-
It is highly likely that the largest density of tetrahedral packings reported in Ref. can be improved.
-
-
-
-
31
-
-
66049132505
-
-
The figures are generated using the online java application developed by
-
The figures are generated using the online java application developed by H. Hoffmann.
-
-
-
Hoffmann, H.1
-
32
-
-
66049113678
-
-
There is a fundamental distinction between the shapes of superball surfaces in the octahedral-like regime (0≤p<1) and the cubic-like regime (1
-
There is a fundamental distinction between the shapes of superball surfaces in the octahedral-like regime (0≤p<1) and the cubic-like regime (1
-
-
-
-
33
-
-
66049109353
-
-
Two polyhedra are dual to each other if the vertices of one correspond to the faces of the other.
-
Two polyhedra are dual to each other if the vertices of one correspond to the faces of the other.
-
-
-
-
36
-
-
0346385884
-
-
10.1016/S0925-7721(00)00007-9
-
U. Betke and M. Henk, Comput. Geom. 16, 157 (2000). This paper reports the densest Bravais lattice packings of a number of different three-dimensional polyhedra. 10.1016/S0925-7721(00)00007-9
-
(2000)
Comput. Geom.
, vol.16
, pp. 157
-
-
Betke, U.1
Henk, M.2
-
37
-
-
66049143115
-
-
The regular octahedron is centrally symmetric. In the densest octahedral lattice packing found by Minkowski, the octahedra have the maximal number of face-to-face contacting neighbors, which significantly reduces the free volume. This observation together with the results of our optimization simulations described in the text strongly suggests that the Minkowski-lattice packing of regular octahedra is optimal among all packings of octahedra, which we conjecture to be the case.
-
The regular octahedron is centrally symmetric. In the densest octahedral lattice packing found by Minkowski, the octahedra have the maximal number of face-to-face contacting neighbors, which significantly reduces the free volume. This observation together with the results of our optimization simulations described in the text strongly suggests that the Minkowski-lattice packing of regular octahedra is optimal among all packings of octahedra, which we conjecture to be the case.
-
-
-
-
42
-
-
66049090862
-
-
In a saturated packing, there is no space available to add another particle to the packing.
-
In a saturated packing, there is no space available to add another particle to the packing.
-
-
-
-
43
-
-
66049099429
-
-
Ph.D. thesis, Princeton University
-
A. Donev, Ph.D. thesis, Princeton University, 2006.
-
(2006)
-
-
Donev, A.1
-
45
-
-
1142274207
-
-
10.1126/science.1093010
-
A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R. Connelly, S. Torquato, and P. M. Chaikin, Science 303, 990 (2004). 10.1126/science.1093010
-
(2004)
Science
, vol.303
, pp. 990
-
-
Donev, A.1
Cisse, I.2
Sachs, D.3
Variano, E.A.4
Stillinger, F.H.5
Connelly, R.6
Torquato, S.7
Chaikin, P.M.8
-
47
-
-
33644531570
-
-
10.1103/PhysRevB.73.054109
-
A. Donev, J. Burton, F. H. Stillinger, and S. Torquato, Phys. Rev. B 73, 054109 (2006). 10.1103/PhysRevB.73.054109
-
(2006)
Phys. Rev. B
, vol.73
, pp. 054109
-
-
Donev, A.1
Burton, J.2
Stillinger, F.H.3
Torquato, S.4
-
49
-
-
34347270239
-
-
10.1103/PhysRevE.75.051304
-
A. Donev, R. Connelly, F. H. Stillinger, and S. Torquato, Phys. Rev. E 75, 051304 (2007). 10.1103/PhysRevE.75.051304
-
(2007)
Phys. Rev. e
, vol.75
, pp. 051304
-
-
Donev, A.1
Connelly, R.2
Stillinger, F.H.3
Torquato, S.4
|