메뉴 건너뛰기




Volumn 79, Issue 4, 2009, Pages

Optimal packings of superballs

Author keywords

[No Author keywords available]

Indexed keywords

BRAVAIS LATTICES; DENSE PACKING; EQUILIBRIUM PHASE BEHAVIOR; GLOBAL SYMMETRIES; GRANULAR MEDIA; HARD-PARTICLE PACKINGS; HETEROGENEOUS MATERIALS; LOW TEMPERATURE PHASIS; NON-SPHERICAL; NONSPHERICAL SHAPES; OPTIMAL PACKING; PACKING DENSITY; PARTICLE SYSTEMS; ROTATIONAL SYMMETRIES; SPHERICAL SHAPE; STATISTICAL THERMODYNAMICS; THREE DIMENSIONS;

EID: 66049099790     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.79.041309     Document Type: Article
Times cited : (145)

References (50)
  • 5
    • 0033883075 scopus 로고    scopus 로고
    • 10.1016/S0020-7683(99)00103-1;
    • S. Torquato, Int. J. Solids Struct. 37, 411 (2000) 10.1016/S0020-7683(99) 00103-1
    • (2000) Int. J. Solids Struct. , vol.37 , pp. 411
    • Torquato, S.1
  • 8
    • 0004285533 scopus 로고
    • edited by A. Mehta (Springer, New York
    • S. F. Edwards, in Granular Matter, edited by, A. Mehta, (Springer, New York, 1994).
    • (1994) Granular Matter
    • Edwards, S.F.1
  • 10
    • 0034901412 scopus 로고    scopus 로고
    • 10.1016/S0006-3495(01)75739-6
    • J. Liang and K. A. Dill, Biophys. J. 81, 751 (2001). 10.1016/S0006- 3495(01)75739-6
    • (2001) Biophys. J. , vol.81 , pp. 751
    • Liang, J.1    Dill, K.A.2
  • 21
    • 46349092282 scopus 로고    scopus 로고
    • 10.1007/s10955-008-9539-6
    • G. Parisi, J. Stat. Phys. 132, 207 (2008). 10.1007/s10955-008-9539-6
    • (2008) J. Stat. Phys. , vol.132 , pp. 207
    • Parisi, G.1
  • 23
    • 66049122287 scopus 로고    scopus 로고
    • Supramolecular chemistry deals with the chemistry and collective behavior of molecular building blocks that are organized on large length scales (relative to molecular sizes) with long-range order.
    • Supramolecular chemistry deals with the chemistry and collective behavior of molecular building blocks that are organized on large length scales (relative to molecular sizes) with long-range order.
  • 28
    • 52549094495 scopus 로고    scopus 로고
    • 10.1007/s00454-008-9101-y
    • E. R. Chen, Discrete Comput. Geom. 40, 214 (2008). 10.1007/s00454-008- 9101-y
    • (2008) Discrete Comput. Geom. , vol.40 , pp. 214
    • Chen, E.R.1
  • 29
    • 66049155474 scopus 로고    scopus 로고
    • It is highly likely that the largest density of tetrahedral packings reported in Ref. can be improved.
    • It is highly likely that the largest density of tetrahedral packings reported in Ref. can be improved.
  • 31
    • 66049132505 scopus 로고    scopus 로고
    • The figures are generated using the online java application developed by
    • The figures are generated using the online java application developed by H. Hoffmann.
    • Hoffmann, H.1
  • 32
    • 66049113678 scopus 로고    scopus 로고
    • There is a fundamental distinction between the shapes of superball surfaces in the octahedral-like regime (0≤p<1) and the cubic-like regime (1
    • There is a fundamental distinction between the shapes of superball surfaces in the octahedral-like regime (0≤p<1) and the cubic-like regime (1
  • 33
    • 66049109353 scopus 로고    scopus 로고
    • Two polyhedra are dual to each other if the vertices of one correspond to the faces of the other.
    • Two polyhedra are dual to each other if the vertices of one correspond to the faces of the other.
  • 36
    • 0346385884 scopus 로고    scopus 로고
    • 10.1016/S0925-7721(00)00007-9
    • U. Betke and M. Henk, Comput. Geom. 16, 157 (2000). This paper reports the densest Bravais lattice packings of a number of different three-dimensional polyhedra. 10.1016/S0925-7721(00)00007-9
    • (2000) Comput. Geom. , vol.16 , pp. 157
    • Betke, U.1    Henk, M.2
  • 37
    • 66049143115 scopus 로고    scopus 로고
    • The regular octahedron is centrally symmetric. In the densest octahedral lattice packing found by Minkowski, the octahedra have the maximal number of face-to-face contacting neighbors, which significantly reduces the free volume. This observation together with the results of our optimization simulations described in the text strongly suggests that the Minkowski-lattice packing of regular octahedra is optimal among all packings of octahedra, which we conjecture to be the case.
    • The regular octahedron is centrally symmetric. In the densest octahedral lattice packing found by Minkowski, the octahedra have the maximal number of face-to-face contacting neighbors, which significantly reduces the free volume. This observation together with the results of our optimization simulations described in the text strongly suggests that the Minkowski-lattice packing of regular octahedra is optimal among all packings of octahedra, which we conjecture to be the case.
  • 42
    • 66049090862 scopus 로고    scopus 로고
    • In a saturated packing, there is no space available to add another particle to the packing.
    • In a saturated packing, there is no space available to add another particle to the packing.
  • 43
    • 66049099429 scopus 로고    scopus 로고
    • Ph.D. thesis, Princeton University
    • A. Donev, Ph.D. thesis, Princeton University, 2006.
    • (2006)
    • Donev, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.