메뉴 건너뛰기




Volumn , Issue , 2010, Pages 629-640

Generalized and heuristic-free feature construction for improved accuracy

Author keywords

Accuracy improvement; Automatic; Efficiency; Feature construction

Indexed keywords

EFFICIENCY; NEONATAL MONITORING; PETROLEUM RESERVOIR EVALUATION;

EID: 78651326189     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972801.55     Document Type: Conference Paper
Times cited : (34)

References (18)
  • 1
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach. Neural Comput., 12(10):2385-2404, 2000.
    • (2000) Neural Comput. , vol.12 , Issue.10 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 2
    • 0001858087 scopus 로고
    • Multivariate decision trees
    • Carla E. Brodley and Paul E. Utgoff. Multivariate decision trees. Mach. Learn., 19(1):45-77, 1995.
    • (1995) Mach. Learn. , vol.19 , Issue.1 , pp. 45-77
    • Brodley, C.E.1    Utgoff, P.E.2
  • 3
    • 33750331605 scopus 로고    scopus 로고
    • Feature selection and classification using flexible neural tree
    • Yuehui Chen, Ajith Abraham, and Bo Yang. Feature selection and classification using flexible neural tree. Neurocomputing, 70(1-3):305-313, 2006.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 305-313
    • Chen, Y.1    Abraham, A.2    Yang, B.3
  • 5
  • 11
    • 0036778917 scopus 로고    scopus 로고
    • Feature generation using general constructor functions
    • Shaul Markovitch and Dan Rosenstein. Feature generation using general constructor functions. Mach. Learn., 49(1):59-98, 2002.
    • (2002) Mach. Learn. , vol.49 , Issue.1 , pp. 59-98
    • Markovitch, S.1    Rosenstein, D.2
  • 14
    • 56749132927 scopus 로고    scopus 로고
    • Iterative feature construction for improving inductive learning algorithms
    • Selwyn Piramuthu and Riyaz T. Sikora. Iterative feature construction for improving inductive learning algorithms. Expert Syst. Appl., 36(2):3401-3406, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3401-3406
    • Piramuthu, S.1    Sikora, R.T.2
  • 15
    • 0010012318 scopus 로고
    • Incremental learning from noisy data
    • Jeffrey C. Schlimmer and Richard H. Granger, Jr. Incremental learning from noisy data. Mach. Learn., 1(3):317-354, 1986.
    • (1986) Mach. Learn. , vol.1 , Issue.3 , pp. 317-354
    • Schlimmer, J.C.1    Granger Jr., R.H.2
  • 16
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput., 10(5):1299-1319, 1998.
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Klaus-Robert, M.3
  • 17
    • 27944437848 scopus 로고    scopus 로고
    • Genetic programming with a genetic algorithm for feature construction and selection
    • Matthew G. Smith and Larry Bull. Genetic programming with a genetic algorithm for feature construction and selection. Genetic Programming and Evolvable Machines, 6(3):265-281, 2005.
    • (2005) Genetic Programming and Evolvable Machines , vol.6 , Issue.3 , pp. 265-281
    • Smith, M.G.1    Bull, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.