-
1
-
-
56349143219
-
An intelligent diagnosis system based on principle component analysis and ANFIS for the heart valve diseases
-
Mar. 2009
-
Avci, E. and Turkoglu, I. 2009. An intelligent diagnosis system based on principle component analysis and ANFIS for the heart valve diseases. Expert Syst. Appl. 36, 2 (Mar. 2009), 2873-2878.
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.2
, pp. 2873-2878
-
-
Avci, E.1
Turkoglu, I.2
-
3
-
-
0003802343
-
-
Montery: Wadsworth and Brooks/ Cole
-
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Montery: Wadsworth and Brooks/ Cole.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
4
-
-
78651232399
-
Models to predict cardiovascular risk: Comparison of CART, multilayer perceptron and logistic regression
-
Colombet, I., Ruelland, A., Chatellier, G., Gueyffier, F., Degoulet, P., & Jaulent, M. C. (2000). Models to predict cardiovascular risk: comparison of CART, multilayer perceptron and logistic regression. Proc AMIA Symp, 156160.
-
(2000)
Proc AMIA Symp
, pp. 156160
-
-
Colombet, I.1
Ruelland, A.2
Chatellier, G.3
Gueyffier, F.4
Degoulet, P.5
Jaulent, M.C.6
-
5
-
-
58149316227
-
Diagnosis of valvular heart disease through neural networks ensembles
-
Feb. 2009
-
Das, R., Turkoglu, I., and Sengur, A. 2009. Diagnosis of valvular heart disease through neural networks ensembles. Comput. Methods Prog. Biomed. 93, 2 (Feb. 2009), 185-191.
-
(2009)
Comput. Methods Prog. Biomed.
, vol.93
, Issue.2
, pp. 185-191
-
-
Das, R.1
Turkoglu, I.2
Sengur, A.3
-
6
-
-
78651255112
-
Arti.cial neural networks in cardiology; a review
-
P. E. Vardas(Ed.), Great Britain: Kluwer Academic Publishers
-
Dassen, W. R. M., Egmont-Petersen, M., & Mulleneers, R.G.A. (1998).Arti.cial neural networks in cardiology; a review. In P. E. Vardas(Ed.),Cardiac arrhythmias, pacing and electrophysiology (pp. 205211).Great Britain: Kluwer Academic Publishers.
-
(1998)
Cardiac Arrhythmias, Pacing and Electrophysiology
, pp. 205211
-
-
Dassen, W.R.M.1
Egmont-Petersen, M.2
Mulleneers, R.G.A.3
-
7
-
-
19344364327
-
Predicting breast cancer survivability: A comparison of three data mining methods
-
DOI 10.1016/j.artmed.2004.07.002, PII S0933365704001010
-
Delen, D., Walker, G., & Kadam, A. (2004). Predicting breast cancer survivability: a comparison of three data mining methods. Artificial Intelligence in Medicine, 34(2), 113127. (Pubitemid 40719029)
-
(2005)
Artificial Intelligence in Medicine
, vol.34
, Issue.2
, pp. 113-127
-
-
Delen, D.1
Walker, G.2
Kadam, A.3
-
8
-
-
0003079343
-
Comparative study of artificial neural network and statistical medels for predicting student grade point averages
-
Gorr, W. L., Nagin, D., & Szczypula, J.(1994). Comparative study of artificial neural network and statistical medels for predicting student grade point averages. International Journal of Forecasting, 10, 17-34.
-
(1994)
International Journal of Forecasting
, vol.10
, pp. 17-34
-
-
Gorr, W.L.1
Nagin, D.2
Szczypula, J.3
-
10
-
-
34248647301
-
Comparing performances of logistic regression, classi.cation and regression tree, and neural networks for predicting coronary artery disease
-
Imran Kurt, Mevlut Ture,A.Turhan Kurum.2008.Comparing performances of logistic regression, classi.cation and regression tree, and neural networks for predicting coronary artery disease.Expert Systems with Applications 34(2008),366-374.
-
(2008)
Expert Systems with Applications
, vol.34
, Issue.2008
, pp. 366-374
-
-
Kurt, I.1
Ture, M.2
Kurum, A.T.3
-
11
-
-
16544378108
-
Beyond Clinical Documentation: Using the EMR as a Quality Tool
-
November 22-24
-
J.Morris,"Beyond Clinical Documentation: Using the EMR as a Quality Tool," Health Management Technology, volime 25, issue 11, November 2004, pp. 20,22-24.
-
(2004)
Health Management Technology
, vol.25
, Issue.11
, pp. 20
-
-
Morris, J.1
-
12
-
-
0029306995
-
Statlog-comparison of classification algorithms on large real-world problems
-
King, R. D., Feng, C., & Sutherland, A. (1995). Statlog-comparison of classification algorithms on large real-world problems. Applied Artificial Intelligence, 9(3), 289333.
-
(1995)
Applied Artificial Intelligence
, vol.9
, Issue.3
, pp. 289333
-
-
King, R.D.1
Feng, C.2
Sutherland, A.3
-
13
-
-
0035540985
-
Model Selection for neural network classification
-
Lee, H. K. H. (2001). Model Selection for neural network classification. Journal of Classification, 18, 227243.
-
(2001)
Journal of Classification
, vol.18
, pp. 227243
-
-
Lee, H.K.H.1
-
15
-
-
0037202445
-
Comparing five modelling techniques for predicting forests characteristics
-
Moisen, G. G., & Frescino, T. S. (2002). Comparing five modelling techniques for predicting forests characteristics. Ecological Modelling, 157, 209225.
-
(2002)
Ecological Modelling
, vol.157
, pp. 209225
-
-
Moisen, G.G.1
Frescino, T.S.2
-
17
-
-
78651241597
-
The application of nonparametric techniques to solve classification problems in complex data sets in veterinary epidemiologyan example
-
Stark, K. D. C., & Pfeiffer, D. U. (1999). The application of nonparametric techniques to solve classification problems in complex data sets in veterinary epidemiologyan example. Intelligent Data Analysis, 3, 2335.
-
(1999)
Intelligent Data Analysis
, vol.3
, pp. 2335
-
-
Stark, K.D.C.1
Pfeiffer, D.U.2
-
18
-
-
34247544962
-
Predicting carcinoid heart disease with the noisy-threshold classifier
-
May. 2007
-
van Gerven, M. A., Jurgelenaite, R., Taal, B. G., Heskes, T., and Lucas, P. J. 2007. Predicting carcinoid heart disease with the noisy-threshold classifier. Artif. Intell. Med. 40, 1 (May. 2007), 45-55.
-
(2007)
Artif. Intell. Med.
, vol.40
, Issue.1
, pp. 45-55
-
-
Van Gerven, M.A.1
Jurgelenaite, R.2
Taal, B.G.3
Heskes, T.4
Lucas, P.J.5
|