메뉴 건너뛰기




Volumn 5, Issue 12, 2010, Pages

Complexity of the tensegrity structure for dynamic energy and force distribution of cytoskeleton during cell spreading

Author keywords

[No Author keywords available]

Indexed keywords

ACTIN FILAMENT; ARTICLE; CELL ADHESION; CELL ENERGY; CELL FUNCTION; CELL SPREADING; COMPRESSIVE STRENGTH; CONTROLLED STUDY; CYTOSKELETON; ENERGY CONSUMPTION; FOCAL ADHESION; FORCE; MICROTUBULE; MOLECULAR DYNAMICS; PHYSICAL PHENOMENA; STRUCTURE ANALYSIS; TENSEGRITY STRUCTURE; TENSILE STRENGTH; ALGORITHM; BIOLOGICAL MODEL; BIOPHYSICS; COMPUTER SIMULATION; FINITE ELEMENT ANALYSIS; HUMAN; MECHANICAL STRESS; METABOLISM; STATISTICAL MODEL; THEORETICAL MODEL;

EID: 78650989329     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0014392     Document Type: Article
Times cited : (28)

References (41)
  • 1
    • 0032437490 scopus 로고    scopus 로고
    • A tensegrity model of the cytoskeleton in spread and round cells
    • Coughlin MF, Stamenovic D (1998) A tensegrity model of the cytoskeleton in spread and round cells. J Biomech Eng 120: 770-777.
    • (1998) J Biomech Eng , vol.120 , pp. 770-777
    • Coughlin, M.F.1    Stamenovic, D.2
  • 2
    • 33744488545 scopus 로고    scopus 로고
    • Cellular mechanotransduction: Putting all the pieces together again
    • Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20: 811-827.
    • (2006) FASEB J , vol.20 , pp. 811-827
    • Ingber, D.E.1
  • 3
    • 45249093434 scopus 로고    scopus 로고
    • Tensegrity-based mechanosensing from macro to micro
    • Ingber DE (2008) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97: 163-179.
    • (2008) Prog Biophys Mol Biol , vol.97 , pp. 163-179
    • Ingber, D.E.1
  • 4
    • 0028282547 scopus 로고
    • Cellular tensegrity: Exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis
    • Ingber DE, Dike L, Hansen L, Karp S, Liley H, et al. (1994) Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int Rev Cytol 150: 173-224.
    • (1994) Int Rev Cytol , vol.150 , pp. 173-224
    • Ingber, D.E.1    Dike, L.2    Hansen, L.3    Karp, S.4    Liley, H.5
  • 6
    • 0028342810 scopus 로고
    • Control of Cytoskeletal Mechanics by Extracellular- Matrix, Cell-Shape, and Mechanical Tension
    • Wang N, Ingber DE (1994) Control of Cytoskeletal Mechanics by Extracellular- Matrix, Cell-Shape, and Mechanical Tension. Biophysical Journal 66: 2181-2189.
    • (1994) Biophysical Journal , vol.66 , pp. 2181-2189
    • Wang, N.1    Ingber, D.E.2
  • 8
    • 0037305872 scopus 로고    scopus 로고
    • A prestressed cable network model of the adherent cell cytoskeleton
    • Coughlin MF, Stamenovic D (2003) A prestressed cable network model of the adherent cell cytoskeleton. Biophys J 84: 1328-1336.
    • (2003) Biophys J , vol.84 , pp. 1328-1336
    • Coughlin, M.F.1    Stamenovic, D.2
  • 9
    • 44649169680 scopus 로고    scopus 로고
    • Mechanical model of cytoskeleton structuration during cell adhesion and spreading
    • Maurin B, Canadas P, Baudriller H, Montcourrier P, Bettache N (2008) Mechanical model of cytoskeleton structuration during cell adhesion and spreading. J Biomech 41: 2036-2041.
    • (2008) J Biomech , vol.41 , pp. 2036-2041
    • Maurin, B.1    Canadas, P.2    Baudriller, H.3    Montcourrier, P.4    Bettache, N.5
  • 10
    • 38949136411 scopus 로고    scopus 로고
    • Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: Model and experiment
    • Paul R, Heil P, Spatz JP, Schwarz US (2008) Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: model and experiment. Biophys J 94: 1470-1482.
    • (2008) Biophys J , vol.94 , pp. 1470-1482
    • Paul, R.1    Heil, P.2    Spatz, J.P.3    Schwarz, U.S.4
  • 11
    • 45849088818 scopus 로고    scopus 로고
    • Micromechanical model for elasticity of the cell cytoskeleton
    • Roy S, Qi HJ (2008) Micromechanical model for elasticity of the cell cytoskeleton. Phys Rev E Stat Nonlin Soft Matter Phys 77: 061916.
    • (2008) Phys Rev E Stat Nonlin Soft Matter Phys , vol.77 , pp. 061916
    • Roy, S.1    Qi, H.J.2
  • 12
    • 0031304319 scopus 로고    scopus 로고
    • Mechanical remodeling of the endothelial surface and actin cytoskeleton induced by fluid flow
    • Satcher R, Dewey CF, Jr., Hartwig JH (1997) Mechanical remodeling of the endothelial surface and actin cytoskeleton induced by fluid flow. Microcirculation 4: 439-453.
    • (1997) Microcirculation , vol.4 , pp. 439-453
    • Satcher, R.1    Dewey Jr., C.F.2    Hartwig, J.H.3
  • 13
    • 57349186038 scopus 로고    scopus 로고
    • Contribution of actin filaments and microtubules to quasi-in situ tensile properties and internal force balance of cultured smooth muscle cells on a substrate
    • Nagayama K, Matsumoto T (2008) Contribution of actin filaments and microtubules to quasi-in situ tensile properties and internal force balance of cultured smooth muscle cells on a substrate. Am J Physiol Cell Physiol 295: C1569-C1578.
    • (2008) Am J Physiol Cell Physiol , vol.295
    • Nagayama, K.1    Matsumoto, T.2
  • 15
    • 0036398907 scopus 로고    scopus 로고
    • A cellular tensegrity model to analyse the structural viscoelasticity of the cytoskeleton
    • Canadas P, Laurent VM, Oddou C, Isabey D, Wendling S (2002) A cellular tensegrity model to analyse the structural viscoelasticity of the cytoskeleton. J Theor Biol 218: 155-173.
    • (2002) J Theor Biol , vol.218 , pp. 155-173
    • Canadas, P.1    Laurent, V.M.2    Oddou, C.3    Isabey, D.4    Wendling, S.5
  • 16
    • 33746881412 scopus 로고    scopus 로고
    • Frequency response of a viscoelastic tensegrity model: Structural rearrangement contribution to cell dynamics
    • Canadas P, Wendling-Mansuy S, Isabey D (2006) Frequency response of a viscoelastic tensegrity model: Structural rearrangement contribution to cell dynamics. J Biomech Eng 128: 487-495.
    • (2006) J Biomech Eng , vol.128 , pp. 487-495
    • Canadas, P.1    Wendling-Mansuy, S.2    Isabey, D.3
  • 17
    • 2642535320 scopus 로고    scopus 로고
    • A computational tensegrity model predicts dynamic rheological behaviors in living cells
    • Sultan C, Stamenovic D, Ingber DE (2004) A computational tensegrity model predicts dynamic rheological behaviors in living cells. Ann Biomed Eng 32: 520-530.
    • (2004) Ann Biomed Eng , vol.32 , pp. 520-530
    • Sultan, C.1    Stamenovic, D.2    Ingber, D.E.3
  • 18
    • 0003793099 scopus 로고
    • Berkeley and Los Angeles, California: University of California Press
    • Pugh A (1976) An introduction to tensegrity. Berkeley and Los Angeles, California: University of California Press.
    • (1976) An Introduction to Tensegrity
    • Pugh, A.1
  • 19
    • 5144228697 scopus 로고    scopus 로고
    • A three-dimensional finite element model of an adherent eukaryotic cell
    • discussion 33-24
    • McGarry JG, Prendergast PJ (2004) A three-dimensional finite element model of an adherent eukaryotic cell. Eur Cell Mater 7: 27-33; discussion 33-24.
    • (2004) Eur Cell Mater , vol.7 , pp. 27-33
    • McGarry, J.G.1    Prendergast, P.J.2
  • 20
    • 0036463954 scopus 로고    scopus 로고
    • Interrelations between elastic energy and strain in a tensegrity model: Contribution to the analysis of the mechanical response in living cells
    • Wendling S, CaNadas P, Oddou C, Meunier A (2002) Interrelations between elastic energy and strain in a tensegrity model: contribution to the analysis of the mechanical response in living cells. Comput Methods Biomech Biomed Engin 5: 1-6.
    • (2002) Comput Methods Biomech Biomed Engin , vol.5 , pp. 1-6
    • Wendling, S.1    Canadas, P.2    Oddou, C.3    Meunier, A.4
  • 21
    • 0141500029 scopus 로고    scopus 로고
    • Toward a generalised tensegrity model describing the mechanical behaviour of the cytoskeleton structure
    • Wendling S, Canadas P, Chabrand P (2003) Toward a generalised tensegrity model describing the mechanical behaviour of the cytoskeleton structure. Comput Methods Biomech Biomed Engin 6: 45-52.
    • (2003) Comput Methods Biomech Biomed Engin , vol.6 , pp. 45-52
    • Wendling, S.1    Canadas, P.2    Chabrand, P.3
  • 22
    • 0003592277 scopus 로고
    • Berkeley and Los Angeles, California: University of California Press
    • Kenner H (1976) Geodesic math and how to use it. Berkeley and Los Angeles, California: University of California Press.
    • (1976) Geodesic Math and How to Use It
    • Kenner, H.1
  • 23
    • 0027533269 scopus 로고
    • Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape
    • Gittes F, Mickey B, Nettleton J, Howard J (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120: 923-934.
    • (1993) J Cell Biol , vol.120 , pp. 923-934
    • Gittes, F.1    Mickey, B.2    Nettleton, J.3    Howard, J.4
  • 24
    • 0003212442 scopus 로고    scopus 로고
    • Mechanical properties of the cellular cytoskeleton
    • September/October
    • Boal DH (1997) Mechanical properties of the cellular cytoskeleton. Physics in Canada September/October. pp 228-236.
    • (1997) Physics In Canada , pp. 228-236
    • Boal, D.H.1
  • 25
    • 0033533978 scopus 로고    scopus 로고
    • The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: A quantitative analysis
    • Stamenovic D, Coughlin MF (1999) The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: a quantitative analysis. J Theor Biol 201: 63-74.
    • (1999) J Theor Biol , vol.201 , pp. 63-74
    • Stamenovic, D.1    Coughlin, M.F.2
  • 26
    • 0034143860 scopus 로고    scopus 로고
    • A quantitative model of cellular elasticity based on tensegrity
    • Stamenovic D, Coughlin MF (2000) A quantitative model of cellular elasticity based on tensegrity. J Biomech Eng 122: 39-43.
    • (2000) J Biomech Eng , vol.122 , pp. 39-43
    • Stamenovic, D.1    Coughlin, M.F.2
  • 27
    • 0032960681 scopus 로고    scopus 로고
    • Changes in the mechanical properties of fibroblasts during spreading: A micromanipulation study
    • Thoumine O, Cardoso O, Meister JJ (1999) Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study. Eur Biophys J 28: 222-234.
    • (1999) Eur Biophys J , vol.28 , pp. 222-234
    • Thoumine, O.1    Cardoso, O.2    Meister, J.J.3
  • 28
    • 19744377167 scopus 로고    scopus 로고
    • Traction in smooth muscle cells varies with cell spreading
    • Tolic-Norrelykke IM, Wang N (2005) Traction in smooth muscle cells varies with cell spreading. J Biomech 38: 1405-1412.
    • (2005) J Biomech , vol.38 , pp. 1405-1412
    • Tolic-Norrelykke, I.M.1    Wang, N.2
  • 29
    • 0346335559 scopus 로고    scopus 로고
    • Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting
    • Laurent VM, Fodil R, Canadas P, Fereol S, Louis B, et al. (2003) Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting. Ann Biomed Eng 31: 1263-1278.
    • (2003) Ann Biomed Eng , vol.31 , pp. 1263-1278
    • Laurent, V.M.1    Fodil, R.2    Canadas, P.3    Fereol, S.4    Louis, B.5
  • 31
    • 0028607563 scopus 로고
    • Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation
    • Kojima H, Ishijima A, Yanagida T (1994) Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc Natl Acad Sci U S A 91: 12962-12966.
    • (1994) Proc Natl Acad Sci U S A , vol.91 , pp. 12962-12966
    • Kojima, H.1    Ishijima, A.2    Yanagida, T.3
  • 33
    • 0033770910 scopus 로고    scopus 로고
    • Opposing views on tensegrity as a structural framework for understanding cell mechanics
    • Ingber DE (2000) Opposing views on tensegrity as a structural framework for understanding cell mechanics. J Appl Physiol 89: 1663-1670.
    • (2000) J Appl Physiol , vol.89 , pp. 1663-1670
    • Ingber, D.E.1
  • 34
    • 0033816002 scopus 로고    scopus 로고
    • Tensegrity architecture explains linear stiffening and predicts softening of living cells
    • Volokh KY, Vilnay O, Belsky M (2000) Tensegrity architecture explains linear stiffening and predicts softening of living cells. J Biomech 33: 1543-1549.
    • (2000) J Biomech , vol.33 , pp. 1543-1549
    • Volokh, K.Y.1    Vilnay, O.2    Belsky, M.3
  • 35
    • 0037383404 scopus 로고    scopus 로고
    • Tensegrity I. Cell structure and hierarchical systems biology
    • Ingber DE (2003) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116: 1157-1173.
    • (2003) J Cell Sci , vol.116 , pp. 1157-1173
    • Ingber, D.E.1
  • 36
    • 48349140751 scopus 로고    scopus 로고
    • A multi-modular tensegrity model of an actin stress fiber
    • Luo Y, Xu X, Lele T, Kumar S, Ingber DE (2008) A multi-modular tensegrity model of an actin stress fiber. J Biomech 41: 2379-2387.
    • (2008) J Biomech , vol.41 , pp. 2379-2387
    • Luo, Y.1    Xu, X.2    Lele, T.3    Kumar, S.4    Ingber, D.E.5
  • 37
    • 0035073844 scopus 로고    scopus 로고
    • Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts
    • Munevar S, Wang Y, Dembo M (2001) Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys J 80: 1744-1757.
    • (2001) Biophys J , vol.80 , pp. 1744-1757
    • Munevar, S.1    Wang, Y.2    Dembo, M.3
  • 38
    • 46749108441 scopus 로고    scopus 로고
    • Mapping cellmatrix stresses during stretch reveals inelastic reorganization of the cytoskeleton
    • Gavara N, Roca-Cusachs P, Sunyer R, Farre R, Navajas D (2008) Mapping cellmatrix stresses during stretch reveals inelastic reorganization of the cytoskeleton. Biophys J 95: 464-471.
    • (2008) Biophys J , vol.95 , pp. 464-471
    • Gavara, N.1    Roca-Cusachs, P.2    Sunyer, R.3    Farre, R.4    Navajas, D.5
  • 39
    • 70349554702 scopus 로고    scopus 로고
    • Live Cells Exert 3-Dimensional Traction Forces on Their Substrata
    • Hur SS, Zhao Y, Li YS, E. B, S. C (2009) Live Cells Exert 3-Dimensional Traction Forces on Their Substrata. Cell Mol Bioeng 2: 425-436.
    • (2009) Cell Mol Bioeng , vol.2 , pp. 425-436
    • Hur, S.S.1    Zhao, Y.2    Li, Y.S.3
  • 40
    • 33747382078 scopus 로고    scopus 로고
    • Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement
    • Brangwynne CP, MacKintosh FC, Kumar S, Geisse NA, Talbot J, et al. (2006) Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J Cell Biol 173: 733-741.
    • (2006) J Cell Biol , vol.173 , pp. 733-741
    • Brangwynne, C.P.1    Mackintosh, F.C.2    Kumar, S.3    Geisse, N.A.4    Talbot, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.