메뉴 건너뛰기




Volumn 26, Issue 1, 2011, Pages 1-30

Methods for mining frequent items in data streams: An overview

Author keywords

Data mining; Data stream; Frequent items; Mining methods and algorithms

Indexed keywords

DATA MINING; INFORMATION MANAGEMENT; MONITORING; SENSOR NETWORKS;

EID: 78650983135     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-009-0267-2     Document Type: Article
Times cited : (67)

References (71)
  • 2
    • 68349150835 scopus 로고    scopus 로고
    • On classification and segmentation of massive audio data streams
    • Aggarwal C (2009) On classification and segmentation of massive audio data streams. Knowl Inf Syst 20(2): 137-156.
    • (2009) Knowl Inf Syst , vol.20 , Issue.2 , pp. 137-156
    • Aggarwal, C.1
  • 3
    • 0033077324 scopus 로고    scopus 로고
    • The space complexity of approximating the frequent moments
    • Alon N, Matias Y, Szegedy M (1999) The space complexity of approximating the frequent moments. J Comput Syst Sci 58(1): 137-147.
    • (1999) J Comput Syst Sci , vol.58 , Issue.1 , pp. 137-147
    • Alon, N.1    Matias, Y.2    Szegedy, M.3
  • 5
    • 3142749702 scopus 로고    scopus 로고
    • Proceedings of 23rd ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems
    • Arasu A, Manku GS (2004) Approximate counts and quantiles over sliding windows. In: Proceedings of 23rd ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems, pp 286-296.
    • (2004) Approximate counts and quantiles over sliding windows , pp. 286-296
    • Arasu, A.1    Manku, G.S.2
  • 7
    • 1142279464 scopus 로고    scopus 로고
    • Proceedings of 22nd ACM SIGMOD international conference on management of data
    • Babcock B, Olston C (2003) Distributed top-k monitoring. In: Proceedings of 22nd ACM SIGMOD international conference on management of data, pp 28-39.
    • (2003) Distributed top-k monitoring , pp. 28-39
    • Babcock, B.1    Olston, C.2
  • 10
    • 0014814325 scopus 로고
    • Space/time trade-offs in hash coding with allowable errors
    • Bloom BH (1970) Space/time trade-offs in hash coding with allowable errors. Commun ACM 13(7): 422-426.
    • (1970) Commun ACM , vol.13 , Issue.7 , pp. 422-426
    • Bloom, B.H.1
  • 11
    • 78650974728 scopus 로고    scopus 로고
    • Proceedings of 10th SIROCCO international colloquium on structural information and communication complexity
    • Bose P, Kranakis E, Morin P, Tang Y (2003) Bounds for frequency estimation of packet streams. In: Proceedings of 10th SIROCCO international colloquium on structural information and communication complexity, pp 33-42.
    • (2003) Bounds for frequency estimation of packet streams , pp. 33-42
    • Bose, P.1    Kranakis, E.2    Morin, P.3    Tang, Y.4
  • 12
    • 1142296951 scopus 로고
    • Technical report 35, Institute for Computer Science, University of Texas
    • Boyer B, Moore J (1982) A fast majority vote algorithm. Technical report 35, Institute for Computer Science, University of Texas.
    • (1982) A fast majority vote algorithm
    • Boyer, B.1    Moore, J.2
  • 13
    • 84869158135 scopus 로고    scopus 로고
    • Proceedings of 29th international colloquium on automata, languages and programming
    • Charikar M, Chen K, Farach-Colton M (2002) Finding frequent items in data streams. In: Proceedings of 29th international colloquium on automata, languages and programming, pp 693-703.
    • (2002) Finding frequent items in data streams , pp. 693-703
    • Charikar, M.1    Chen, K.2    Farach-Colton, M.3
  • 15
    • 33747616446 scopus 로고    scopus 로고
    • Maintaining time-decaying stream aggregates
    • Cohen E, Strauss M (2006) Maintaining time-decaying stream aggregates. J Algorithm 59(1): 19-36.
    • (2006) J Algorithm , vol.59 , Issue.1 , pp. 19-36
    • Cohen, E.1    Strauss, M.2
  • 29
    • 0040286013 scopus 로고
    • Finding a majority among N votes: solution to problem 81-5
    • Fischer MJ, Salzberg SL (1982) Finding a majority among N votes: solution to problem 81-5. J Algorithm 3(4): 376-379.
    • (1982) J Algorithm , vol.3 , Issue.4 , pp. 376-379
    • Fischer, M.J.1    Salzberg, S.L.2
  • 38
    • 2442617843 scopus 로고    scopus 로고
    • Issues in data stream management
    • Golab L, Ozsu MT (2003) Issues in data stream management. ACM SIGMOD Record 32(2): 5-14.
    • (2003) ACM SIGMOD Record , vol.32 , Issue.2 , pp. 5-14
    • Golab, L.1    Ozsu, M.T.2
  • 39
    • 33747879284 scopus 로고    scopus 로고
    • Adaptive spatial partitioning for multidimensional data streams
    • Hershberger J, Shrivastava N, Suri S, Toth CD (2006) Adaptive spatial partitioning for multidimensional data streams. Algorithmica 46(1): 97-117.
    • (2006) Algorithmica , vol.46 , Issue.1 , pp. 97-117
    • Hershberger, J.1    Shrivastava, N.2    Suri, S.3    Toth, C.D.4
  • 41
    • 77950690114 scopus 로고    scopus 로고
    • Efficient mining of skyline objects in subspaces over data streams
    • doi: 10. 1007/s10115-008-0185-8
    • Huang Z, Sun S, Wang W (2009) Efficient mining of skyline objects in subspaces over data streams. Knowl Inf Syst. doi: 10. 1007/s10115-008-0185-8.
    • (2009) Knowl Inf Syst
    • Huang, Z.1    Sun, S.2    Wang, W.3
  • 46
    • 0348252034 scopus 로고    scopus 로고
    • A simple algorithm for finding frequent elements in sets and bags
    • Karp R, Papadimitriou C, Shenker S (2003) A simple algorithm for finding frequent elements in sets and bags. ACM Trans Database Syst 28(1): 51-55.
    • (2003) ACM Trans Database Syst , vol.28 , Issue.1 , pp. 51-55
    • Karp, R.1    Papadimitriou, C.2    Shenker, S.3
  • 47
    • 85012146683 scopus 로고    scopus 로고
    • Proceedings of 29th ACM international conference on very large databases (VLDB' 03)
    • Koudas N, Srivastava D (2003) Data stream query processing: a tutorial. In: Proceedings of 29th ACM international conference on very large databases (VLDB' 03), pp 1149.
    • (2003) Data stream query processing: A tutorial , pp. 1149
    • Koudas, N.1    Srivastava, D.2
  • 49
    • 77950692375 scopus 로고    scopus 로고
    • Consistent collective evaluation of multiple continuous queries for filtering heterogeneous data streams
    • doi: 10. 1007/s10115-008-0186-7
    • Lee H, Lee W (2009) Consistent collective evaluation of multiple continuous queries for filtering heterogeneous data streams. Knowl Inf Syst. doi: 10. 1007/s10115-008-0186-7.
    • (2009) Knowl Inf Syst
    • Lee, H.1    Lee, W.2
  • 51
    • 38049076597 scopus 로고    scopus 로고
    • Proceedings of the 3rd international conference on advanced data mining and applications. Lecture notes in artificial intelligence
    • Lin Y, Liu H (2006) Separator: sifting hierarchical heavy hitters accurately from data streams. In: Proceedings of the 3rd international conference on advanced data mining and applications. Lecture notes in artificial intelligence, vol 4632, pp 170-182.
    • (2006) Separator: Sifting hierarchical heavy hitters accurately from data streams , vol.4632 , pp. 170-182
    • Lin, Y.1    Liu, H.2
  • 52
    • 33746096967 scopus 로고    scopus 로고
    • Yu JX, Kitsuregawa M, Leong H (eds) International conference on advances in web-age information management (WAIM' 06). Lecture notes in computer science, Springer, Berlin
    • Liu HY, Lu Y, Han JW, He J (2006) Error-adaptive and time-aware maintenance of frequency counts over data streams. In: Yu JX, Kitsuregawa M, Leong H (eds) International conference on advances in web-age information management (WAIM' 06). Lecture notes in computer science, vol 4016, Springer, Berlin, pp 484-495.
    • (2006) Error-adaptive and time-aware maintenance of frequency counts over data streams , vol.4016 , pp. 484-495
    • Liu, H.Y.1    Lu, Y.2    Han, J.W.3    He, J.4
  • 53
    • 67649991184 scopus 로고    scopus 로고
    • Answering linear optimization queries with an approximate stream index
    • Luo G, Wu K, Yu P (2009) Answering linear optimization queries with an approximate stream index. Knowl Inf Syst 20(1): 95-121.
    • (2009) Knowl Inf Syst , vol.20 , Issue.1 , pp. 95-121
    • Luo, G.1    Wu, K.2    Yu, P.3
  • 56
    • 0346354497 scopus 로고    scopus 로고
    • Proceedings of 28th ACM international conference on very large databases (VLDB' 02)
    • Manku G, Motwani R (2002) Approximate frequency counts over data streams. In: Proceedings of 28th ACM international conference on very large databases (VLDB' 02), pp 346-357.
    • (2002) Approximate frequency counts over data streams , pp. 346-357
    • Manku, G.1    Motwani, R.2
  • 61
    • 78650993892 scopus 로고    scopus 로고
    • Proceedings of 14th ACM symposium discrete algorithms (SDA '03)
    • Muthukrishnan S (2003) Data streams: algorithms and applications. In: Proceedings of 14th ACM symposium discrete algorithms (SDA '03). http://athos. rutgers. edu/~muthu/stream-1-1. ps.
    • (2003) Data streams: Algorithms and applications
    • Muthukrishnan, S.1
  • 65
    • 0002663969 scopus 로고    scopus 로고
    • Proceedings of 22nd international conference on very large databases (VLDB'96)
    • Toivonen H (1996) Sampling large database for association rules. In: Proceedings of 22nd international conference on very large databases (VLDB'96), pp 134-145.
    • (1996) Sampling large database for association rules , pp. 134-145
    • Toivonen, H.1
  • 66
    • 0022026217 scopus 로고
    • Random sampling with a reservoir
    • Vitter JS (1985) Random sampling with a reservoir. ACM Trans Math Softw 11(1): 37-57.
    • (1985) ACM Trans Math Softw , vol.11 , Issue.1 , pp. 37-57
    • Vitter, J.S.1
  • 69
    • 77952095901 scopus 로고    scopus 로고
    • TOPSIL-Miner: an efficient algorithm for mining top-K significant itemsets over data streams
    • doi: 10. 1007/s10115-009-0211-5
    • Yang B, Huang H (2009) TOPSIL-Miner: an efficient algorithm for mining top-K significant itemsets over data streams. Knowl Inf Syst. doi: 10. 1007/s10115-009-0211-5.
    • (2009) Knowl Inf Syst
    • Yang, B.1    Huang, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.