메뉴 건너뛰기




Volumn 1, Issue 2, 2008, Pages 1530-1541

Finding frequent items in data streams

Author keywords

[No Author keywords available]

Indexed keywords

DATA STREAM; DATA STREAM MINING; EXPERIMENTAL CONDITIONS; HIGH-ACCURACY; INDUSTRIAL SYSTEMS; RELATED WORKS;

EID: 84867128082     PISSN: None     EISSN: 21508097     Source Type: Conference Proceeding    
DOI: 10.14778/1454159.1454225     Document Type: Article
Times cited : (277)

References (39)
  • 2
    • 84867120934 scopus 로고    scopus 로고
    • Approximate counts and quantiles over sliding windows
    • A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding windows. In ACM PODS, 2004.
    • (2004) ACM PODS
    • Arasu, A.1    Manku, G.S.2
  • 7
    • 33750178210 scopus 로고    scopus 로고
    • Bounds for frequency estimation of packet streams
    • P. Bose, E. Kranakis, P. Morin, and Y. Tang. Bounds for frequency estimation of packet streams. In SIROCCO, 2003.
    • (2003) SIROCCO
    • Bose, P.1    Kranakis, E.2    Morin, P.3    Tang, Y.4
  • 9
    • 0001013288 scopus 로고
    • MJRTY - a fast majority vote algorithm
    • Automated Reasoning Series, Kluwer Academic Publishers
    • R. S. Boyer and J. S. Moore. MJRTY - a fast majority vote algorithm. In Automated Reasoning: Essays in Honor of Woody Bledsoe, Automated Reasoning Series, pages 105-117. Kluwer Academic Publishers, 1991.
    • (1991) Automated Reasoning: Essays in Honor of Woody Bledsoe , pp. 105-117
    • Boyer, R.S.1    Moore, J.S.2
  • 12
    • 84867125917 scopus 로고    scopus 로고
    • Finding Frequent Items in Data Streams: Source Code
    • G. Cormode and M. Hadjieleftheriou. Finding Frequent Items in Data Streams: Source Code. http://www.research.att.com/~marioh/frequent-items.html.
    • Cormode, G.1    Hadjieleftheriou, M.2
  • 14
    • 49049095131 scopus 로고    scopus 로고
    • Space- and time-efficient deterministic algorithms for biased quantiles over data streams
    • G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Space- and time-efficient deterministic algorithms for biased quantiles over data streams. In ACM PODS, 2006.
    • (2006) ACM PODS
    • Cormode, G.1    Korn, F.2    Muthukrishnan, S.3    Srivastava, D.4
  • 16
    • 77952301474 scopus 로고    scopus 로고
    • MassDAL Public Code Bank
    • G. Cormode and S. Muthukrishnan. MassDAL Public Code Bank. http://www.cs.rutgers.edu/~muthu/ massdal-code-index.html.
    • Cormode, G.1    Muthukrishnan, S.2
  • 17
    • 8344272783 scopus 로고    scopus 로고
    • What's new: Finding significant differences in network data streams
    • G. Cormode and S. Muthukrishnan. What's new: Finding significant differences in network data streams. In Proceedings of IEEE Infocom, 2004.
    • (2004) Proceedings of IEEE Infocom
    • Cormode, G.1    Muthukrishnan, S.2
  • 18
    • 14844367057 scopus 로고    scopus 로고
    • An improved data stream summary: The count-min sketch and its applications
    • G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch and its applications. Journal of Algorithms, 55(1):58-75, 2005.
    • (2005) Journal of Algorithms , vol.55 , Issue.1 , pp. 58-75
    • Cormode, G.1    Muthukrishnan, S.2
  • 21
    • 35449004137 scopus 로고    scopus 로고
    • Statistical analysis of sketch estimators
    • A. Dobra and F. Rusu. Statistical analysis of sketch estimators. In ACM SIGMOD, 2007.
    • (2007) ACM SIGMOD
    • Dobra, A.1    Rusu, F.2
  • 22
    • 0040286013 scopus 로고
    • Finding a majority among n votes: Solution to problem 81-5
    • M. Fischer and S. Salzburg. Finding a majority among n votes: Solution to problem 81-5. Journal of Algorithms, 3(4):376-379, 1982.
    • (1982) Journal of Algorithms , vol.3 , Issue.4 , pp. 376-379
    • Fischer, M.1    Salzburg, S.2
  • 24
    • 0034832347 scopus 로고    scopus 로고
    • Space-efficient online computation of quantile summaries
    • M. Greenwald and S. Khanna. Space-efficient online computation of quantile summaries. In ACM SIGMOD, 2001.
    • (2001) ACM SIGMOD
    • Greenwald, M.1    Khanna, S.2
  • 25
    • 26444529149 scopus 로고    scopus 로고
    • Adaptive spatial partitioning for multidimensional data streams
    • J. Hershberger, N. Shrivastava, S. Suri, and C. Toth. Adaptive spatial partitioning for multidimensional data streams. In ISAAC, 2004.
    • (2004) ISAAC
    • Hershberger, J.1    Shrivastava, N.2    Suri, S.3    Toth, C.4
  • 26
    • 67649655706 scopus 로고    scopus 로고
    • Estimating statistical aggregates on probabilistic data streams
    • T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee. Estimating statistical aggregates on probabilistic data streams. In ACM PODS, 2007.
    • (2007) ACM PODS
    • Jayram, T.S.1    McGregor, A.2    Muthukrishnan, S.3    Vee, E.4
  • 29
    • 84867120930 scopus 로고    scopus 로고
    • A simpler and more efficient deterministic scheme for finding frequent items over sliding windows
    • L. Lee and H. Ting. A simpler and more efficient deterministic scheme for finding frequent items over sliding windows. In ACM PODS, 2006.
    • (2006) ACM PODS
    • Lee, L.1    Ting, H.2
  • 31
    • 85039683075 scopus 로고    scopus 로고
    • Frequency counts over data streams
    • G. S. Manku. Frequency counts over data streams. http://www.cse.ust.hk/vldb2002/ VLDB2002-proceedings/slides/ S10P03slides.pdf, 2002.
    • (2002)
    • Manku, G.S.1
  • 37
    • 33750403174 scopus 로고    scopus 로고
    • Medians and beyond: New aggregation techniques for sensor networks
    • N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond: New aggregation techniques for sensor networks. In ACM SenSys, 2004.
    • (2004) ACM SenSys
    • Shrivastava, N.1    Buragohain, C.2    Agrawal, D.3    Suri, S.4
  • 39
    • 1842435123 scopus 로고    scopus 로고
    • Tabulation based 4-universal hashing with applications to second moment estimation
    • M. Thorup and Y. Zhang. Tabulation based 4-universal hashing with applications to second moment estimation. In ACM-SIAM Symposium on Discrete Algorithms, 2004.
    • (2004) ACM-SIAM Symposium on Discrete Algorithms
    • Thorup, M.1    Zhang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.