메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1139-1142

Non-parametric anomaly detection exploiting space-time features

Author keywords

action recognition; anomaly detection; local descriptors; spatio temporal interest points; surveillance

Indexed keywords

ACTION RECOGNITION; ANOMALY DETECTION; LOCAL DESCRIPTORS; SPATIO-TEMPORAL; SURVEILLANCE;

EID: 78650981161     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1873951.1874170     Document Type: Conference Paper
Times cited : (6)

References (24)
  • 1
    • 67349116864 scopus 로고    scopus 로고
    • Detecting abnormal human behaviour using multiple cameras
    • P. Antonakaki, D. Kosmopoulos, and S. J. Perantonis. Detecting abnormal human behaviour using multiple cameras. Signal Processing, 89(9):1723-1738, 2009.
    • (2009) Signal Processing , vol.89 , Issue.9 , pp. 1723-1738
    • Antonakaki, P.1    Kosmopoulos, D.2    Perantonis, S.J.3
  • 2
    • 34247614190 scopus 로고    scopus 로고
    • Detecting irregularities in images and in video
    • Aug.
    • O. Boiman and M. Irani. Detecting irregularities in images and in video. International Journal of Computer Vision, 74(1):17-31, Aug. 2007.
    • (2007) International Journal of Computer Vision , vol.74 , Issue.1 , pp. 17-31
    • Boiman, O.1    Irani, M.2
  • 9
    • 63449140858 scopus 로고    scopus 로고
    • A dynamic hierarchical clustering method for trajectory-based unusual video event detection
    • Apr.
    • F. Jiang, Y. Wu, and A. Katsaggelos. A dynamic hierarchical clustering method for trajectory-based unusual video event detection. IEEE Transactions on Image Processing, 18(4):907-913, Apr. 2009.
    • (2009) IEEE Transactions on Image Processing , vol.18 , Issue.4 , pp. 907-913
    • Jiang, F.1    Wu, Y.2    Katsaggelos, A.3
  • 10
    • 70450169881 scopus 로고    scopus 로고
    • Observe locally, infer globally: A space-time MRF for detecting abnormal activities with incremental updates
    • J. Kim and K. Grauman. Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates. In Proc. of CVPR, 2009.
    • Proc. of CVPR, 2009
    • Kim, J.1    Grauman, K.2
  • 12
    • 70450214749 scopus 로고    scopus 로고
    • Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models
    • L. Kratz and K. Nishino. Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In Proc. of CVPR, 2009.
    • Proc. of CVPR, 2009
    • Kratz, L.1    Nishino, K.2
  • 15
    • 51949105885 scopus 로고    scopus 로고
    • Recognizing human actions using multiple features
    • J. Liu, S. Ali, and M. Shah. Recognizing human actions using multiple features. In Proc. of CVPR, 2008.
    • Proc. of CVPR, 2008
    • Liu, J.1    Ali, S.2    Shah, M.3
  • 17
    • 70450255364 scopus 로고    scopus 로고
    • Abnormal crowd behavior detection using social force model
    • R. Mehran, A. Oyama, and M. Shah. Abnormal crowd behavior detection using social force model. In Proc. of CVPR, 2009.
    • Proc. of CVPR, 2009
    • Mehran, R.1    Oyama, A.2    Shah, M.3
  • 18
    • 45049084813 scopus 로고    scopus 로고
    • Unsupervised learning of human action categories using spatial-temporal words
    • J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of human action categories using spatial-temporal words. International Journal of Computer Vision, 79(3):299-318, 2008.
    • (2008) International Journal of Computer Vision , vol.79 , Issue.3 , pp. 299-318
    • Niebles, J.C.1    Wang, H.2    Fei-Fei, L.3
  • 19
    • 33748453850 scopus 로고    scopus 로고
    • On-line trajectory clustering for anomalous events detection
    • Vision for Crime Detection and Prevention
    • C. Piciarelli and G. Foresti. On-line trajectory clustering for anomalous events detection. Pattern Recognition Letters, 27(15):1835 - 1842, 2006. Vision for Crime Detection and Prevention.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.15 , pp. 1835-1842
    • Piciarelli, C.1    Foresti, G.2
  • 20
    • 70450192896 scopus 로고    scopus 로고
    • Dense saliency-based spatiotemporal feature points for action recognition
    • K. Rapantzikos, Y. Avrithis, and S. Kollia. Dense saliency-based spatiotemporal feature points for action recognition. In Proc. of CVPR, 2009.
    • Proc. of CVPR, 2009
    • Rapantzikos, K.1    Avrithis, Y.2    Kollia, S.3
  • 21
    • 37849037402 scopus 로고    scopus 로고
    • A 3-Dimensional SIFT descriptor and its application to action recognition
    • P. Scovanner, S. Ali, and M. Shah. A 3-Dimensional SIFT descriptor and its application to action recognition. In Proc. of ACM Multimedia, 2007.
    • Proc. of ACM Multimedia, 2007
    • Scovanner, P.1    Ali, S.2    Shah, M.3
  • 22
    • 77955173456 scopus 로고    scopus 로고
    • Video surveillance online repository (ViSOR): An integrated framework
    • in press
    • R. Vezzani and R. Cucchiara. Video surveillance online repository (ViSOR): an integrated framework. Multimedia Tools and Applications, in press, 2010.
    • (2010) Multimedia Tools and Applications
    • Vezzani, R.1    Cucchiara, R.2
  • 23
    • 70450196950 scopus 로고    scopus 로고
    • An efficient dense and scale-invariant spatio-temporal interest point detector
    • G. Willems, T. Tuytelaars, and L. Van Gool. An efficient dense and scale-invariant spatio-temporal interest point detector. In Proc. of ECCV, 2008.
    • Proc. of ECCV, 2008
    • Willems, G.1    Tuytelaars, T.2    Van Gool, L.3
  • 24
    • 50649119435 scopus 로고    scopus 로고
    • Extracting spatiotemporal interest points using global information
    • S.-F. Wong and R. Cipolla. Extracting spatiotemporal interest points using global information. In Proc. of ICCV, 2007.
    • Proc. of ICCV, 2007
    • Wong, S.-F.1    Cipolla, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.