-
1
-
-
1842679076
-
-
A. V. Shah H. Schade M. Vanecek J. Meier E. Vallat-Sauvain N. Wyrsch U. Kroll C. Droz J. Bailat Progr. Photovolt.: Res. Appl. 2004 12 113 142
-
(2004)
Progr. Photovolt.: Res. Appl.
, vol.12
, pp. 113-142
-
-
Shah, A.V.1
Schade, H.2
Vanecek, M.3
Meier, J.4
Vallat-Sauvain, E.5
Wyrsch, N.6
Kroll, U.7
Droz, C.8
Bailat, J.9
-
4
-
-
33745016422
-
-
J. van de Lagemaat T. M. Barnes G. Rumbles S. E. Shaheen T. J. Coutts C. Weeks I. Levitsky J. Peltola P. Glatkowski Applied Physics Letters 2006 88
-
(2006)
Applied Physics Letters
, pp. 88
-
-
Van De Lagemaat, J.1
Barnes, T.M.2
Rumbles, G.3
Shaheen, S.E.4
Coutts, T.J.5
Weeks, C.6
Levitsky, I.7
Peltola, J.8
Glatkowski, P.9
-
5
-
-
33745022549
-
-
M. W. Rowell T.M.A. M. D. McGehee H. J. Prall G. Dennler N. S. Sariciftci L. Hu G. Gruner Appl. Phys. Lett. 2006 88 233506
-
(2006)
Appl. Phys. Lett.
, vol.88
, pp. 233506
-
-
Rowell, M.W.1
M, A.T.2
McGehee, M.D.3
Prall, H.J.4
Dennler, G.5
Sariciftci, N.S.6
Hu, L.7
Gruner, G.8
-
6
-
-
4344647530
-
-
Z. C. Wu Z. H. Chen X. Du J. M. Logan J. Sippel M. Nikolou K. Kamaras J. R. Reynolds D. B. Tanner A. F. Hebard A. G. Rinzler Science 2004 305 1273 1276
-
(2004)
Science
, vol.305
, pp. 1273-1276
-
-
Wu, Z.C.1
Chen, Z.H.2
Du, X.3
Logan, J.M.4
Sippel, J.5
Nikolou, M.6
Kamaras, K.7
Reynolds, J.R.8
Tanner, D.B.9
Hebard, A.F.10
Rinzler, A.G.11
-
7
-
-
69249141373
-
-
R. C. Tenent T. M. Barnes J. D. Bergeson A. J. Ferguson B. To L. M. Gedvilas M. J. Heben J. L. Blackburn Adv. Mater. 2009 21 3210
-
(2009)
Adv. Mater.
, vol.21
, pp. 3210
-
-
Tenent, R.C.1
Barnes, T.M.2
Bergeson, J.D.3
Ferguson, A.J.4
To, B.5
Gedvilas, L.M.6
Heben, M.J.7
Blackburn, J.L.8
-
8
-
-
77956430820
-
-
S. Bae H. S. Kim Y. Lee X. Xu J. S. Park Y. Zheng T. L. Balakrishnan H. R. Kim Y. I. Song Y. J. Kim K. S. Kim J. H. A. Ozyilmaz B. H. Hong S. Iijima Nat. Nanotechnol. 2010 5 574
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 574
-
-
Bae, S.1
Kim, H.S.2
Lee, Y.3
Xu, X.4
Park, J.S.5
Zheng, Y.6
Balakrishnan, T.L.7
Kim, H.R.8
Song, Y.I.9
Kim, Y.J.10
Kim, K.S.11
Ozyilmaz, J.H.A.12
Hong, B.H.13
Iijima, S.14
-
12
-
-
78650822318
-
-
R. Noriega J. Rivnay L. Goris D. Kalblein H. Klauk K. Kern L. M. Thompson A. C. Palke J. F. Stebbins J. R. Jokisaari G. Kusinski A. Salleo Journal of Applied Physics 2010 107
-
(2010)
Journal of Applied Physics
, pp. 107
-
-
Noriega, R.1
Rivnay, J.2
Goris, L.3
Kalblein, D.4
Klauk, H.5
Kern, K.6
Thompson, L.M.7
Palke, A.C.8
Stebbins, J.F.9
Jokisaari, J.R.10
Kusinski, G.11
Salleo, A.12
-
15
-
-
0023018451
-
-
S. Nakano T. Matsuoka S. Kiyama H. Kawata N. Nakamura Y. Nakashima S. Tsuda H. Nishiwaki M. Ohnishi I. Nagaoka Y. Kuwano Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 1986 25 1936 1943
-
(1986)
Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers
, vol.25
, pp. 1936-1943
-
-
Nakano, S.1
Matsuoka, T.2
Kiyama, S.3
Kawata, H.4
Nakamura, N.5
Nakashima, Y.6
Tsuda, S.7
Nishiwaki, H.8
Ohnishi, M.9
Nagaoka, I.10
Kuwano, Y.11
-
20
-
-
79955549626
-
-
Some thin film solar cells use a window layer or interface modifier (e.g. CdS (ref. 17) or PEDOT: PSS (ref. 18) which can be very conductive and so scribing must be done after this second layer is deposited or the gap must be made sufficiently wide to avoid shunting between adjacent cells. Furthermore, materials such as CdTe or CIGS can be fairly conductive themselves, in which case P1 must be sufficiently wide or scribing can be performed after the semiconductor deposition and the gap filled prior to deposition of the second electrode
-
Some thin film solar cells use a window layer or interface modifier (e.g. CdS (ref. 17) or PEDOT: PSS (ref. 18) which can be very conductive and so scribing must be done after this second layer is deposited or the gap must be made sufficiently wide to avoid shunting between adjacent cells. Furthermore, materials such as CdTe or CIGS can be fairly conductive themselves, in which case P1 must be sufficiently wide or scribing can be performed after the semiconductor deposition and the gap filled prior to deposition of the second electrode
-
-
-
-
23
-
-
79955538356
-
-
Note that when both the absorption spectrum of the solar cell and the absorption spectrum of the TC in consideration are known, the TC losses should be integrated over the solar spectrum
-
Note that when both the absorption spectrum of the solar cell and the absorption spectrum of the TC in consideration are known, the TC losses should be integrated over the solar spectrum
-
-
-
-
25
-
-
79955529050
-
-
The conductivity of ITO (Sorizon Technologies) was calculated from sheet resistance (van der Pauw method: 20 Ω/sq) and thickness measurements (atomic force microscopy: 110 nm). The index of refraction and extinction coefficient were measured with an ellipsometer. Values were taken at 550 nm
-
The conductivity of ITO (Sorizon Technologies) was calculated from sheet resistance (van der Pauw method: 20 Ω/sq) and thickness measurements (atomic force microscopy: 110 nm). The index of refraction and extinction coefficient were measured with an ellipsometer. Values were taken at 550 nm
-
-
-
-
26
-
-
0034251416
-
-
For each line in Fig. 2 an optimum thickness has been used in each case. This way it does not matter if the conductivity is changed or if the absorptivity is changed. Only the ratio conductivity/absorptivity matters
-
R. G. Gordon Mrs Bulletin 2000 25 52 57
-
(2000)
Mrs Bulletin
, vol.25
, pp. 52-57
-
-
Gordon, R.G.1
|