메뉴 건너뛰기




Volumn 34, Issue 1, 2011, Pages 41-50

Development, specification, and diversity of callosal projection neurons

Author keywords

[No Author keywords available]

Indexed keywords

AUTISM; BRAIN CELL; BRAIN CORTEX; BRAIN DEVELOPMENT; BRAIN FUNCTION; CALLOSAL PROJECTION NEURON; CINGULATE GYRUS; CORPUS CALLOSUM; FLUORESCENCE ACTIVATED CELL SORTING; GENETIC REGULATION; HUMAN; MICROARRAY ANALYSIS; NERVE FIBER; NERVE PROJECTION; NONHUMAN; PRIORITY JOURNAL; REVIEW; SUBVENTRICULAR ZONE;

EID: 78650745174     PISSN: 01662236     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tins.2010.10.002     Document Type: Review
Times cited : (286)

References (98)
  • 1
    • 13244281707 scopus 로고    scopus 로고
    • Prefrontal white matter volume is disproportionately larger in humans than in other primates
    • Schoenemann P.T., et al. Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat. Neurosci. 2005, 8:242-252.
    • (2005) Nat. Neurosci. , vol.8 , pp. 242-252
    • Schoenemann, P.T.1
  • 2
    • 0037720330 scopus 로고    scopus 로고
    • One hundred million years of interhemispheric communication: the history of the corpus callosum
    • Aboitiz F., Montiel J. One hundred million years of interhemispheric communication: the history of the corpus callosum. Braz. J. Med. Biol. Res. 2003, 36:409-420.
    • (2003) Braz. J. Med. Biol. Res. , vol.36 , pp. 409-420
    • Aboitiz, F.1    Montiel, J.2
  • 4
    • 70349454021 scopus 로고    scopus 로고
    • Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex
    • Kowalczyk T., et al. Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb. Cortex 2009, 19:2439-2450.
    • (2009) Cereb. Cortex , vol.19 , pp. 2439-2450
    • Kowalczyk, T.1
  • 5
    • 1642458489 scopus 로고    scopus 로고
    • Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases
    • Noctor S.C., et al. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 2004, 7:136-144.
    • (2004) Nat. Neurosci. , vol.7 , pp. 136-144
    • Noctor, S.C.1
  • 6
    • 33846781309 scopus 로고    scopus 로고
    • Layer-specific markers as probes for neuron type identity in human neocortex and malformations of cortical development
    • Hevner R.F. Layer-specific markers as probes for neuron type identity in human neocortex and malformations of cortical development. J. Neuropathol. Exp. Neurol. 2007, 66:101-109.
    • (2007) J. Neuropathol. Exp. Neurol. , vol.66 , pp. 101-109
    • Hevner, R.F.1
  • 7
    • 0034949044 scopus 로고    scopus 로고
    • Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression
    • Tarabykin V., et al. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 2001, 128:1983-1993.
    • (2001) Development , vol.128 , pp. 1983-1993
    • Tarabykin, V.1
  • 9
    • 0015965793 scopus 로고
    • Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition
    • Rakic P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 1974, 183:425-427.
    • (1974) Science , vol.183 , pp. 425-427
    • Rakic, P.1
  • 10
    • 12344252023 scopus 로고    scopus 로고
    • Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo
    • Arlotta P., et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 2005, 45:207-221.
    • (2005) Neuron , vol.45 , pp. 207-221
    • Arlotta, P.1
  • 11
    • 24644512722 scopus 로고    scopus 로고
    • Fezl is required for the birth and specification of corticospinal motor neurons
    • Molyneaux B.J., et al. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 2005, 47:817-831.
    • (2005) Neuron , vol.47 , pp. 817-831
    • Molyneaux, B.J.1
  • 12
    • 28044463122 scopus 로고    scopus 로고
    • Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex
    • Chen B., et al. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:17184-17189.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 17184-17189
    • Chen, B.1
  • 13
    • 29144503953 scopus 로고    scopus 로고
    • Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex
    • Chen J.G., et al. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:17792-17797.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 17792-17797
    • Chen, J.G.1
  • 14
    • 34249084013 scopus 로고    scopus 로고
    • Neuronal subtype specification in the cerebral cortex
    • Molyneaux B.J., et al. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 2007, 8:427-437.
    • (2007) Nat. Rev. Neurosci. , vol.8 , pp. 427-437
    • Molyneaux, B.J.1
  • 15
    • 38349046968 scopus 로고    scopus 로고
    • SOX5 controls the sequential generation of distinct corticofugal neuron subtypes
    • Lai T., et al. SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron 2008, 57:232-247.
    • (2008) Neuron , vol.57 , pp. 232-247
    • Lai, T.1
  • 16
    • 38749108136 scopus 로고    scopus 로고
    • Satb2 regulates callosal projection neuron identity in the developing cerebral cortex
    • Alcamo E.A., et al. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 2008, 57:364-377.
    • (2008) Neuron , vol.57 , pp. 364-377
    • Alcamo, E.A.1
  • 17
    • 38749146304 scopus 로고    scopus 로고
    • Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex
    • Britanova O., et al. Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 2008, 57:378-392.
    • (2008) Neuron , vol.57 , pp. 378-392
    • Britanova, O.1
  • 18
    • 54049142963 scopus 로고    scopus 로고
    • Bhlhb5 regulates the postmitotic acquisition of area identities in layers II-V of the developing neocortex
    • Joshi P.S., et al. Bhlhb5 regulates the postmitotic acquisition of area identities in layers II-V of the developing neocortex. Neuron 2008, 60:258-272.
    • (2008) Neuron , vol.60 , pp. 258-272
    • Joshi, P.S.1
  • 19
    • 69449106270 scopus 로고    scopus 로고
    • Lmo4 and Clim1 progressively delineate cortical projection neuron subtypes during development
    • Azim E., et al. Lmo4 and Clim1 progressively delineate cortical projection neuron subtypes during development. Cereb. Cortex 2009, 19(Suppl. 1):i62-i69.
    • (2009) Cereb. Cortex , vol.19 , Issue.SUPPL. 1
    • Azim, E.1
  • 20
    • 70349483913 scopus 로고    scopus 로고
    • SOX6 controls dorsal-ventral progenitor parcellation and interneuron diversity during development of the neocortex
    • Azim E., et al. SOX6 controls dorsal-ventral progenitor parcellation and interneuron diversity during development of the neocortex. Nat. Neurosci. 2009, 12:1238-1247.
    • (2009) Nat. Neurosci. , vol.12 , pp. 1238-1247
    • Azim, E.1
  • 21
    • 77649306010 scopus 로고    scopus 로고
    • Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI
    • Tomassy G.S., et al. Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:3576-3581.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 3576-3581
    • Tomassy, G.S.1
  • 22
    • 33947417339 scopus 로고    scopus 로고
    • Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity
    • Paul L.K., et al. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat. Rev. Neurosci. 2007, 8:287-299.
    • (2007) Nat. Rev. Neurosci. , vol.8 , pp. 287-299
    • Paul, L.K.1
  • 23
    • 34447281251 scopus 로고    scopus 로고
    • The new neurobiology of autism: cortex, connectivity, and neuronal organization
    • Minshew N.J., Williams D.L. The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch. Neurol. 2007, 64:945-950.
    • (2007) Arch. Neurol. , vol.64 , pp. 945-950
    • Minshew, N.J.1    Williams, D.L.2
  • 24
    • 34249718861 scopus 로고    scopus 로고
    • Brain abnormalities in language disorders and in autism
    • vii
    • Herbert M.R., Kenet T. Brain abnormalities in language disorders and in autism. Pediatr. Clin. North Am. 2007, 54:563-583. vii.
    • (2007) Pediatr. Clin. North Am. , vol.54 , pp. 563-583
    • Herbert, M.R.1    Kenet, T.2
  • 25
    • 70449686651 scopus 로고    scopus 로고
    • Differential effects on white-matter systems in high-functioning autism and Asperger's syndrome
    • Mcalonan G.M., et al. Differential effects on white-matter systems in high-functioning autism and Asperger's syndrome. Psychol. Med. 2009, 39:1885-1893.
    • (2009) Psychol. Med. , vol.39 , pp. 1885-1893
    • Mcalonan, G.M.1
  • 26
    • 67651064651 scopus 로고    scopus 로고
    • Total brain volume and corpus callosum size in medication-naïve adolescents and young adults with autism spectrum disorder
    • Freitag C.M., et al. Total brain volume and corpus callosum size in medication-naïve adolescents and young adults with autism spectrum disorder. Biol. Psychiatry 2009, 66:316-319.
    • (2009) Biol. Psychiatry , vol.66 , pp. 316-319
    • Freitag, C.M.1
  • 27
    • 33746238755 scopus 로고    scopus 로고
    • Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity
    • Vidal C.N., et al. Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity. Biol. Psychiatry 2006, 60:218-225.
    • (2006) Biol. Psychiatry , vol.60 , pp. 218-225
    • Vidal, C.N.1
  • 28
    • 0029135317 scopus 로고
    • Reduced size of corpus callosum in autism
    • Egaas B., et al. Reduced size of corpus callosum in autism. Arch. Neurol. 1995, 52:794-801.
    • (1995) Arch. Neurol. , vol.52 , pp. 794-801
    • Egaas, B.1
  • 29
    • 0344334400 scopus 로고
    • Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse
    • Angevine J.B., Sidman R.L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 1961, 192:766-768.
    • (1961) Nature , vol.192 , pp. 766-768
    • Angevine, J.B.1    Sidman, R.L.2
  • 30
    • 0019983715 scopus 로고
    • Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways
    • Silver J., et al. Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways. J. Comp. Neurol. 1982, 210:10-29.
    • (1982) J. Comp. Neurol. , vol.210 , pp. 10-29
    • Silver, J.1
  • 31
    • 33846881121 scopus 로고    scopus 로고
    • Commissure formation in the mammalian forebrain
    • Lindwall C., et al. Commissure formation in the mammalian forebrain. Curr. Opin. Neurobiol. 2007, 17:3-14.
    • (2007) Curr. Opin. Neurobiol. , vol.17 , pp. 3-14
    • Lindwall, C.1
  • 32
    • 4844229901 scopus 로고    scopus 로고
    • Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human
    • Richards L.J., et al. Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human. Clin. Genet. 2004, 66:276-289.
    • (2004) Clin. Genet. , vol.66 , pp. 276-289
    • Richards, L.J.1
  • 33
    • 0041883744 scopus 로고    scopus 로고
    • Development of midline glial populations at the corticoseptal boundary
    • Shu T., et al. Development of midline glial populations at the corticoseptal boundary. J. Neurobiol. 2003, 57:81-94.
    • (2003) J. Neurobiol. , vol.57 , pp. 81-94
    • Shu, T.1
  • 34
    • 70349170218 scopus 로고    scopus 로고
    • Understanding the mechanisms of callosal development through the use of transgenic mouse models
    • Donahoo A.L.S., Richards L.J. Understanding the mechanisms of callosal development through the use of transgenic mouse models. Semin. Pediatr. Neurol. 2009, 16:127-142.
    • (2009) Semin. Pediatr. Neurol. , vol.16 , pp. 127-142
    • Donahoo, A.L.S.1    Richards, L.J.2
  • 35
    • 0038105426 scopus 로고    scopus 로고
    • The glial sling is a migratory population of developing neurons
    • Shu T., et al. The glial sling is a migratory population of developing neurons. Development 2003, 130:2929-2937.
    • (2003) Development , vol.130 , pp. 2929-2937
    • Shu, T.1
  • 36
    • 70350493164 scopus 로고    scopus 로고
    • Transient neuronal populations are required to guide callosal axons: a role for semaphorin 3C
    • Niquille M., et al. Transient neuronal populations are required to guide callosal axons: a role for semaphorin 3C. PLoS Biol. 2009, 7:e1000230.
    • (2009) PLoS Biol. , vol.7
    • Niquille, M.1
  • 37
    • 0025750798 scopus 로고
    • Guidance of callosal axons by radial glia in the developing cerebral cortex
    • Norris C.R., Kalil K. Guidance of callosal axons by radial glia in the developing cerebral cortex. J. Neurosci. 1991, 11:3481-3492.
    • (1991) J. Neurosci. , vol.11 , pp. 3481-3492
    • Norris, C.R.1    Kalil, K.2
  • 38
    • 0035963067 scopus 로고    scopus 로고
    • A role for cingulate pioneering axons in the development of the corpus callosum
    • Rash B.G., Richards L.J. A role for cingulate pioneering axons in the development of the corpus callosum. J. Comp. Neurol. 2001, 434:147-157.
    • (2001) J. Comp. Neurol. , vol.434 , pp. 147-157
    • Rash, B.G.1    Richards, L.J.2
  • 39
    • 0027942159 scopus 로고
    • Axons of early generated neurons in cingulate cortex pioneer the corpus callosum
    • Koester S.E., O'Leary D.D. Axons of early generated neurons in cingulate cortex pioneer the corpus callosum. J. Neurosci. 1994, 14:6608-6620.
    • (1994) J. Neurosci. , vol.14 , pp. 6608-6620
    • Koester, S.E.1    O'Leary, D.D.2
  • 40
    • 0032547697 scopus 로고    scopus 로고
    • Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse
    • Ozaki H.S., Wahlsten D. Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse. J. Comp. Neurol. 1998, 400:197-206.
    • (1998) J. Comp. Neurol. , vol.400 , pp. 197-206
    • Ozaki, H.S.1    Wahlsten, D.2
  • 41
    • 69449107600 scopus 로고    scopus 로고
    • Neuropilin 1-sema signaling regulates crossing of cingulate pioneering axons during development of the corpus callosum
    • Piper M., et al. Neuropilin 1-sema signaling regulates crossing of cingulate pioneering axons during development of the corpus callosum. Cereb. Cortex 2009, 19(Suppl. 1):i11-i21.
    • (2009) Cereb. Cortex , vol.19 , Issue.SUPPL. 1
    • Piper, M.1
  • 42
    • 0033082452 scopus 로고    scopus 로고
    • Mena is required for neurulation and commissure formation
    • Lanier L.M., et al. Mena is required for neurulation and commissure formation. Neuron 1999, 22:313-325.
    • (1999) Neuron , vol.22 , pp. 313-325
    • Lanier, L.M.1
  • 43
    • 0042837878 scopus 로고    scopus 로고
    • Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo
    • Shu T., et al. Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo. J. Neurosci. 2003, 23:8176-8184.
    • (2003) J. Neurosci. , vol.23 , pp. 8176-8184
    • Shu, T.1
  • 44
    • 34047138896 scopus 로고    scopus 로고
    • Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain
    • López-Bendito G., et al. Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain. J. Neurosci. 2007, 27:3395-3407.
    • (2007) J. Neurosci. , vol.27 , pp. 3395-3407
    • López-Bendito, G.1
  • 45
    • 33745604522 scopus 로고    scopus 로고
    • Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain
    • Andrews W., et al. Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 2006, 133:2243-2252.
    • (2006) Development , vol.133 , pp. 2243-2252
    • Andrews, W.1
  • 46
    • 0346156106 scopus 로고    scopus 로고
    • Dynamic expression patterns of Robo (Robo1 and Robo2) in the developing murine central nervous system
    • Sundaresan V., et al. Dynamic expression patterns of Robo (Robo1 and Robo2) in the developing murine central nervous system. J. Comp. Neurol. 2004, 468:467-481.
    • (2004) J. Comp. Neurol. , vol.468 , pp. 467-481
    • Sundaresan, V.1
  • 47
    • 0037122889 scopus 로고    scopus 로고
    • Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain
    • Bagri A., et al. Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 2002, 33:233-248.
    • (2002) Neuron , vol.33 , pp. 233-248
    • Bagri, A.1
  • 48
    • 32544453658 scopus 로고    scopus 로고
    • Axonal growth and guidance defects in Frizzled3 knock-out mice: a comparison of diffusion tensor magnetic resonance imaging, neurofilament staining, and genetically directed cell labeling
    • Wang Y., et al. Axonal growth and guidance defects in Frizzled3 knock-out mice: a comparison of diffusion tensor magnetic resonance imaging, neurofilament staining, and genetically directed cell labeling. J. Neurosci. 2006, 26:355-364.
    • (2006) J. Neurosci. , vol.26 , pp. 355-364
    • Wang, Y.1
  • 49
    • 33744976112 scopus 로고    scopus 로고
    • The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum
    • Keeble T.R., et al. The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum. J. Neurosci. 2006, 26:5840-5848.
    • (2006) J. Neurosci. , vol.26 , pp. 5840-5848
    • Keeble, T.R.1
  • 50
    • 65949084004 scopus 로고    scopus 로고
    • Wnt5a induces simultaneous cortical axon outgrowth and repulsive axon guidance through distinct signaling mechanisms
    • Li L., et al. Wnt5a induces simultaneous cortical axon outgrowth and repulsive axon guidance through distinct signaling mechanisms. J. Neurosci. 2009, 29:5873-5883.
    • (2009) J. Neurosci. , vol.29 , pp. 5873-5883
    • Li, L.1
  • 51
    • 0030582772 scopus 로고    scopus 로고
    • Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system
    • Serafini T., et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 1996, 87:1001-1014.
    • (1996) Cell , vol.87 , pp. 1001-1014
    • Serafini, T.1
  • 52
    • 34848909881 scopus 로고    scopus 로고
    • Diffusion tensor magnetic resonance imaging and tract-tracing analysis of Probst bundle structure in Netrin1- and DCC-deficient mice
    • Ren T., et al. Diffusion tensor magnetic resonance imaging and tract-tracing analysis of Probst bundle structure in Netrin1- and DCC-deficient mice. J. Neurosci. 2007, 27:10345-10349.
    • (2007) J. Neurosci. , vol.27 , pp. 10345-10349
    • Ren, T.1
  • 53
    • 0030995125 scopus 로고    scopus 로고
    • Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene
    • Fazeli A., et al. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 1997, 386:796-804.
    • (1997) Nature , vol.386 , pp. 796-804
    • Fazeli, A.1
  • 54
    • 0033540256 scopus 로고    scopus 로고
    • Expression of the netrin-1 receptor, deleted in colorectal cancer (DCC), is largely confined to projecting neurons in the developing forebrain
    • Shu T., et al. Expression of the netrin-1 receptor, deleted in colorectal cancer (DCC), is largely confined to projecting neurons in the developing forebrain. J. Comp. Neurol. 2000, 416:201-212.
    • (2000) J. Comp. Neurol. , vol.416 , pp. 201-212
    • Shu, T.1
  • 55
    • 0038686623 scopus 로고    scopus 로고
    • Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development
    • Gu C., et al. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev. Cell 2003, 5:45-57.
    • (2003) Dev. Cell , vol.5 , pp. 45-57
    • Gu, C.1
  • 56
    • 32544438574 scopus 로고    scopus 로고
    • Multiple Eph receptors and B-class ephrins regulate midline crossing of corpus callosum fibers in the developing mouse forebrain
    • Mendes S.W., et al. Multiple Eph receptors and B-class ephrins regulate midline crossing of corpus callosum fibers in the developing mouse forebrain. J. Neurosci. 2006, 26:882-892.
    • (2006) J. Neurosci. , vol.26 , pp. 882-892
    • Mendes, S.W.1
  • 57
    • 0344198005 scopus 로고    scopus 로고
    • Corpus callosum deficiency in transgenic mice expressing a truncated ephrin-A receptor
    • Hu Z., et al. Corpus callosum deficiency in transgenic mice expressing a truncated ephrin-A receptor. J. Neurosci. 2003, 23:10963-10970.
    • (2003) J. Neurosci. , vol.23 , pp. 10963-10970
    • Hu, Z.1
  • 58
    • 11244281175 scopus 로고    scopus 로고
    • Large-scale maintenance of dual projections by callosal and frontal cortical projection neurons in adult mice
    • Mitchell B.D., Macklis J.D. Large-scale maintenance of dual projections by callosal and frontal cortical projection neurons in adult mice. J. Comp. Neurol. 2005, 482:17-32.
    • (2005) J. Comp. Neurol. , vol.482 , pp. 17-32
    • Mitchell, B.D.1    Macklis, J.D.2
  • 59
    • 28644447375 scopus 로고    scopus 로고
    • Exuberance in the development of cortical networks
    • Innocenti G.M., Price D.J. Exuberance in the development of cortical networks. Nat. Rev. Neurosci. 2005, 6:955-965.
    • (2005) Nat. Rev. Neurosci. , vol.6 , pp. 955-965
    • Innocenti, G.M.1    Price, D.J.2
  • 60
    • 35448976797 scopus 로고    scopus 로고
    • Activity-dependent development of callosal projections in the somatosensory cortex
    • Wang C., et al. Activity-dependent development of callosal projections in the somatosensory cortex. J. Neurosci. 2007, 27:11334-11342.
    • (2007) J. Neurosci. , vol.27 , pp. 11334-11342
    • Wang, C.1
  • 61
    • 34250800258 scopus 로고    scopus 로고
    • Evidence for activity-dependent cortical wiring: formation of interhemispheric connections in neonatal mouse visual cortex requires projection neuron activity
    • Mizuno H., et al. Evidence for activity-dependent cortical wiring: formation of interhemispheric connections in neonatal mouse visual cortex requires projection neuron activity. J. Neurosci. 2007, 27:6760-6770.
    • (2007) J. Neurosci. , vol.27 , pp. 6760-6770
    • Mizuno, H.1
  • 62
    • 75749135649 scopus 로고    scopus 로고
    • Pre-synaptic and post-synaptic neuronal activity supports the axon development of callosal projection neurons during different post-natal periods in the mouse cerebral cortex
    • Mizuno H., et al. Pre-synaptic and post-synaptic neuronal activity supports the axon development of callosal projection neurons during different post-natal periods in the mouse cerebral cortex. Eur. J. Neurosci. 2010, 31:410-424.
    • (2010) Eur. J. Neurosci. , vol.31 , pp. 410-424
    • Mizuno, H.1
  • 63
    • 34147131681 scopus 로고    scopus 로고
    • Axons of callosal neurons bifurcate transiently at the white matter before consolidating an interhemispheric projection
    • Garcez P.P., et al. Axons of callosal neurons bifurcate transiently at the white matter before consolidating an interhemispheric projection. Eur. J. Neurosci. 2007, 25:1384-1394.
    • (2007) Eur. J. Neurosci. , vol.25 , pp. 1384-1394
    • Garcez, P.P.1
  • 64
    • 0016827911 scopus 로고
    • Interhemispheric neocortical connections of the corpus callosum in the normal mouse: a study based on anterograde and retrograde methods
    • Yorke C.H., Caviness V.S. Interhemispheric neocortical connections of the corpus callosum in the normal mouse: a study based on anterograde and retrograde methods. J. Comp. Neurol. 1975, 164:233-245.
    • (1975) J. Comp. Neurol. , vol.164 , pp. 233-245
    • Yorke, C.H.1    Caviness, V.S.2
  • 65
    • 0023201339 scopus 로고
    • Morphology and synaptic connections of crossed corticostriatal neurons in the rat
    • Wilson C.J. Morphology and synaptic connections of crossed corticostriatal neurons in the rat. J. Comp. Neurol. 1987, 263:567-580.
    • (1987) J. Comp. Neurol. , vol.263 , pp. 567-580
    • Wilson, C.J.1
  • 66
    • 0031975031 scopus 로고    scopus 로고
    • Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I
    • Cauller L.J., et al. Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. J. Comp. Neurol. 1998, 390:297-310.
    • (1998) J. Comp. Neurol. , vol.390 , pp. 297-310
    • Cauller, L.J.1
  • 67
    • 0041807596 scopus 로고    scopus 로고
    • Single-cell study of motor cortex projections to the barrel field in rats
    • Veinante P., Deschenes M. Single-cell study of motor cortex projections to the barrel field in rats. J. Comp. Neurol. 2003, 464:98-103.
    • (2003) J. Comp. Neurol. , vol.464 , pp. 98-103
    • Veinante, P.1    Deschenes, M.2
  • 68
    • 60049100527 scopus 로고    scopus 로고
    • Variability of homotopic and heterotopic callosal connectivity in partial agenesis of the corpus callosum: a 3T diffusion tensor imaging and Q-Ball tractography study
    • Wahl M., et al. Variability of homotopic and heterotopic callosal connectivity in partial agenesis of the corpus callosum: a 3T diffusion tensor imaging and Q-Ball tractography study. AJNR Am. J. Neuroradiol. 2008, 30:282-289.
    • (2008) AJNR Am. J. Neuroradiol. , vol.30 , pp. 282-289
    • Wahl, M.1
  • 69
    • 34247548430 scopus 로고    scopus 로고
    • Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections
    • Petreanu L., et al. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 2007, 10:663-668.
    • (2007) Nat. Neurosci. , vol.10 , pp. 663-668
    • Petreanu, L.1
  • 70
    • 42449114786 scopus 로고    scopus 로고
    • Nuclear factor I gene expression in the developing forebrain
    • Plachez C., et al. Nuclear factor I gene expression in the developing forebrain. J. Comp. Neurol. 2008, 508:385-401.
    • (2008) J. Comp. Neurol. , vol.508 , pp. 385-401
    • Plachez, C.1
  • 71
    • 33745698908 scopus 로고    scopus 로고
    • Midline radial glia translocation and corpus callosum formation require FGF signaling
    • Smith K.M., et al. Midline radial glia translocation and corpus callosum formation require FGF signaling. Nat. Neurosci. 2006, 9:787-797.
    • (2006) Nat. Neurosci. , vol.9 , pp. 787-797
    • Smith, K.M.1
  • 72
    • 29144532186 scopus 로고    scopus 로고
    • Development of midline cell types and commissural axon tracts requires Fgfr1 in the cerebrum
    • Tole S., et al. Development of midline cell types and commissural axon tracts requires Fgfr1 in the cerebrum. Dev. Biol. 2006, 289:141-151.
    • (2006) Dev. Biol. , vol.289 , pp. 141-151
    • Tole, S.1
  • 73
    • 0037154872 scopus 로고    scopus 로고
    • Transcriptional regulation of cortical neuron migration by POU domain factors
    • McEvilly R.J., et al. Transcriptional regulation of cortical neuron migration by POU domain factors. Science 2002, 295:1528-1532.
    • (2002) Science , vol.295 , pp. 1528-1532
    • McEvilly, R.J.1
  • 74
    • 0037099207 scopus 로고    scopus 로고
    • Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons
    • Sugitani Y., et al. Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev. 2002, 16:1760-1765.
    • (2002) Genes Dev. , vol.16 , pp. 1760-1765
    • Sugitani, Y.1
  • 75
    • 4744376267 scopus 로고    scopus 로고
    • Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex
    • Nieto M., et al. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex. J. Comp. Neurol. 2004, 479:168-180.
    • (2004) J. Comp. Neurol. , vol.479 , pp. 168-180
    • Nieto, M.1
  • 76
    • 47649106432 scopus 로고    scopus 로고
    • Cux-2 controls the proliferation of neuronal intermediate precursors of the cortical subventricular zone
    • Cubelos B., et al. Cux-2 controls the proliferation of neuronal intermediate precursors of the cortical subventricular zone. Cereb. Cortex 2007, 18:1758-1770.
    • (2007) Cereb. Cortex , vol.18 , pp. 1758-1770
    • Cubelos, B.1
  • 77
    • 28044463122 scopus 로고    scopus 로고
    • Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex
    • Chen B., et al. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:17184-17189.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 17184-17189
    • Chen, B.1
  • 78
    • 29144503953 scopus 로고    scopus 로고
    • Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex
    • Chen J.G., et al. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:17792-17797.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 17792-17797
    • Chen, J.G.1
  • 79
    • 70349554036 scopus 로고    scopus 로고
    • AP2γ regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex
    • Pinto L., et al. AP2γ regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex. Nat. Neurosci. 2009, 12:1229-1237.
    • (2009) Nat. Neurosci. , vol.12 , pp. 1229-1237
    • Pinto, L.1
  • 80
    • 77953251284 scopus 로고    scopus 로고
    • Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex
    • Cubelos B., et al. Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron 2010, 66:523-535.
    • (2010) Neuron , vol.66 , pp. 523-535
    • Cubelos, B.1
  • 81
    • 70349623195 scopus 로고    scopus 로고
    • Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons
    • Molyneaux B.J., et al. Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons. J. Neurosci. 2009, 29:12343-12354.
    • (2009) J. Neurosci. , vol.29 , pp. 12343-12354
    • Molyneaux, B.J.1
  • 82
    • 2442434686 scopus 로고    scopus 로고
    • Stage-specific and opposing roles of BDNF, NT-3 and bFGF in differentiation of purified callosal projection neurons toward cellular repair of complex circuitry
    • Catapano L.A., et al. Stage-specific and opposing roles of BDNF, NT-3 and bFGF in differentiation of purified callosal projection neurons toward cellular repair of complex circuitry. Eur. J. Neurosci. 2004, 19:2421-2434.
    • (2004) Eur. J. Neurosci. , vol.19 , pp. 2421-2434
    • Catapano, L.A.1
  • 83
    • 0035890159 scopus 로고    scopus 로고
    • Specific neurotrophic factors support the survival of cortical projection neurons at distinct stages of development
    • Catapano L.A., et al. Specific neurotrophic factors support the survival of cortical projection neurons at distinct stages of development. J. Neurosci. 2001, 21:8863-8872.
    • (2001) J. Neurosci. , vol.21 , pp. 8863-8872
    • Catapano, L.A.1
  • 84
    • 33750492639 scopus 로고    scopus 로고
    • IGF-I specifically enhances axon outgrowth of corticospinal motor neurons
    • Ozdinler P.H., Macklis J.D. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat. Neurosci. 2006, 9:1371-1381.
    • (2006) Nat. Neurosci. , vol.9 , pp. 1371-1381
    • Ozdinler, P.H.1    Macklis, J.D.2
  • 85
    • 51149107212 scopus 로고    scopus 로고
    • A Novel purification method for CNS projection neurons leads to the identification of brain vascular cells as a source of trophic support for corticospinal motor neurons
    • Dugas J., et al. A Novel purification method for CNS projection neurons leads to the identification of brain vascular cells as a source of trophic support for corticospinal motor neurons. J. Neurosci. 2008, 28:8294-8305.
    • (2008) J. Neurosci. , vol.28 , pp. 8294-8305
    • Dugas, J.1
  • 86
    • 0024109174 scopus 로고
    • Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning
    • Barres B.A., et al. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1988, 1:791-803.
    • (1988) Neuron , vol.1 , pp. 791-803
    • Barres, B.A.1
  • 87
    • 38349029763 scopus 로고    scopus 로고
    • Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum
    • Arlotta P., et al. Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J. Neurosci. 2008, 28:622-632.
    • (2008) J. Neurosci. , vol.28 , pp. 622-632
    • Arlotta, P.1
  • 88
    • 33644769073 scopus 로고    scopus 로고
    • Comparative aspects of cerebral cortical development
    • Molnar Z., et al. Comparative aspects of cerebral cortical development. Eur. J. Neurosci. 2006, 23:921-934.
    • (2006) Eur. J. Neurosci. , vol.23 , pp. 921-934
    • Molnar, Z.1
  • 89
  • 90
    • 67651202042 scopus 로고    scopus 로고
    • Phylogeny of the telencephalic subventricular zone in sauropsids: evidence for the sequential evolution of pallial and subpallial subventricular zones
    • Charvet C.J., et al. Phylogeny of the telencephalic subventricular zone in sauropsids: evidence for the sequential evolution of pallial and subpallial subventricular zones. Brain Behav. Evol. 2009, 73:285-294.
    • (2009) Brain Behav. Evol. , vol.73 , pp. 285-294
    • Charvet, C.J.1
  • 91
    • 0036133288 scopus 로고    scopus 로고
    • Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey
    • Smart I.H., et al. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 2002, 12:37-53.
    • (2002) Cereb. Cortex , vol.12 , pp. 37-53
    • Smart, I.H.1
  • 92
    • 0001725397 scopus 로고
    • Size, distribution, and number of fibres in the human corpus callosum
    • Tomasch J. Size, distribution, and number of fibres in the human corpus callosum. Anat. Rec. 1954, 119:119-135.
    • (1954) Anat. Rec. , vol.119 , pp. 119-135
    • Tomasch, J.1
  • 93
    • 77952867780 scopus 로고    scopus 로고
    • OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling
    • Fietz S.A., et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci. 2010, 13:690-699.
    • (2010) Nat. Neurosci. , vol.13 , pp. 690-699
    • Fietz, S.A.1
  • 94
    • 77950076985 scopus 로고    scopus 로고
    • Neurogenic radial glia in the outer subventricular zone of human neocortex
    • Hansen D.V., et al. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 2010, 464:554-561.
    • (2010) Nature , vol.464 , pp. 554-561
    • Hansen, D.V.1
  • 95
    • 34047107193 scopus 로고    scopus 로고
    • Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis
    • Baala L., et al. Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis. Nat. Genet. 2007, 39:454-456.
    • (2007) Nat. Genet. , vol.39 , pp. 454-456
    • Baala, L.1
  • 96
    • 51949109503 scopus 로고    scopus 로고
    • The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone
    • Arnold S.J., et al. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev. 2008, 22:2479-2484.
    • (2008) Genes Dev. , vol.22 , pp. 2479-2484
    • Arnold, S.J.1
  • 97
    • 53049083077 scopus 로고    scopus 로고
    • Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex
    • Sessa A., et al. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 2008, 60:56-69.
    • (2008) Neuron , vol.60 , pp. 56-69
    • Sessa, A.1
  • 98
    • 34047266827 scopus 로고    scopus 로고
    • Molecular markers distinguishing supragranular and infragranular layers in the human prefrontal cortex
    • Arion D., et al. Molecular markers distinguishing supragranular and infragranular layers in the human prefrontal cortex. Eur. J. Neurosci. 2007, 25:1843-1854.
    • (2007) Eur. J. Neurosci. , vol.25 , pp. 1843-1854
    • Arion, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.