-
1
-
-
13244281707
-
Prefrontal white matter volume is disproportionately larger in humans than in other primates
-
Schoenemann P.T., et al. Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat. Neurosci. 2005, 8:242-252.
-
(2005)
Nat. Neurosci.
, vol.8
, pp. 242-252
-
-
Schoenemann, P.T.1
-
2
-
-
0037720330
-
One hundred million years of interhemispheric communication: the history of the corpus callosum
-
Aboitiz F., Montiel J. One hundred million years of interhemispheric communication: the history of the corpus callosum. Braz. J. Med. Biol. Res. 2003, 36:409-420.
-
(2003)
Braz. J. Med. Biol. Res.
, vol.36
, pp. 409-420
-
-
Aboitiz, F.1
Montiel, J.2
-
4
-
-
70349454021
-
Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex
-
Kowalczyk T., et al. Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb. Cortex 2009, 19:2439-2450.
-
(2009)
Cereb. Cortex
, vol.19
, pp. 2439-2450
-
-
Kowalczyk, T.1
-
5
-
-
1642458489
-
Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases
-
Noctor S.C., et al. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 2004, 7:136-144.
-
(2004)
Nat. Neurosci.
, vol.7
, pp. 136-144
-
-
Noctor, S.C.1
-
6
-
-
33846781309
-
Layer-specific markers as probes for neuron type identity in human neocortex and malformations of cortical development
-
Hevner R.F. Layer-specific markers as probes for neuron type identity in human neocortex and malformations of cortical development. J. Neuropathol. Exp. Neurol. 2007, 66:101-109.
-
(2007)
J. Neuropathol. Exp. Neurol.
, vol.66
, pp. 101-109
-
-
Hevner, R.F.1
-
7
-
-
0034949044
-
Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression
-
Tarabykin V., et al. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 2001, 128:1983-1993.
-
(2001)
Development
, vol.128
, pp. 1983-1993
-
-
Tarabykin, V.1
-
9
-
-
0015965793
-
Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition
-
Rakic P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 1974, 183:425-427.
-
(1974)
Science
, vol.183
, pp. 425-427
-
-
Rakic, P.1
-
10
-
-
12344252023
-
Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo
-
Arlotta P., et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 2005, 45:207-221.
-
(2005)
Neuron
, vol.45
, pp. 207-221
-
-
Arlotta, P.1
-
11
-
-
24644512722
-
Fezl is required for the birth and specification of corticospinal motor neurons
-
Molyneaux B.J., et al. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 2005, 47:817-831.
-
(2005)
Neuron
, vol.47
, pp. 817-831
-
-
Molyneaux, B.J.1
-
12
-
-
28044463122
-
Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex
-
Chen B., et al. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:17184-17189.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 17184-17189
-
-
Chen, B.1
-
13
-
-
29144503953
-
Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex
-
Chen J.G., et al. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:17792-17797.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 17792-17797
-
-
Chen, J.G.1
-
14
-
-
34249084013
-
Neuronal subtype specification in the cerebral cortex
-
Molyneaux B.J., et al. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 2007, 8:427-437.
-
(2007)
Nat. Rev. Neurosci.
, vol.8
, pp. 427-437
-
-
Molyneaux, B.J.1
-
15
-
-
38349046968
-
SOX5 controls the sequential generation of distinct corticofugal neuron subtypes
-
Lai T., et al. SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron 2008, 57:232-247.
-
(2008)
Neuron
, vol.57
, pp. 232-247
-
-
Lai, T.1
-
16
-
-
38749108136
-
Satb2 regulates callosal projection neuron identity in the developing cerebral cortex
-
Alcamo E.A., et al. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 2008, 57:364-377.
-
(2008)
Neuron
, vol.57
, pp. 364-377
-
-
Alcamo, E.A.1
-
17
-
-
38749146304
-
Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex
-
Britanova O., et al. Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 2008, 57:378-392.
-
(2008)
Neuron
, vol.57
, pp. 378-392
-
-
Britanova, O.1
-
18
-
-
54049142963
-
Bhlhb5 regulates the postmitotic acquisition of area identities in layers II-V of the developing neocortex
-
Joshi P.S., et al. Bhlhb5 regulates the postmitotic acquisition of area identities in layers II-V of the developing neocortex. Neuron 2008, 60:258-272.
-
(2008)
Neuron
, vol.60
, pp. 258-272
-
-
Joshi, P.S.1
-
19
-
-
69449106270
-
Lmo4 and Clim1 progressively delineate cortical projection neuron subtypes during development
-
Azim E., et al. Lmo4 and Clim1 progressively delineate cortical projection neuron subtypes during development. Cereb. Cortex 2009, 19(Suppl. 1):i62-i69.
-
(2009)
Cereb. Cortex
, vol.19
, Issue.SUPPL. 1
-
-
Azim, E.1
-
20
-
-
70349483913
-
SOX6 controls dorsal-ventral progenitor parcellation and interneuron diversity during development of the neocortex
-
Azim E., et al. SOX6 controls dorsal-ventral progenitor parcellation and interneuron diversity during development of the neocortex. Nat. Neurosci. 2009, 12:1238-1247.
-
(2009)
Nat. Neurosci.
, vol.12
, pp. 1238-1247
-
-
Azim, E.1
-
21
-
-
77649306010
-
Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI
-
Tomassy G.S., et al. Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:3576-3581.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 3576-3581
-
-
Tomassy, G.S.1
-
22
-
-
33947417339
-
Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity
-
Paul L.K., et al. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat. Rev. Neurosci. 2007, 8:287-299.
-
(2007)
Nat. Rev. Neurosci.
, vol.8
, pp. 287-299
-
-
Paul, L.K.1
-
23
-
-
34447281251
-
The new neurobiology of autism: cortex, connectivity, and neuronal organization
-
Minshew N.J., Williams D.L. The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch. Neurol. 2007, 64:945-950.
-
(2007)
Arch. Neurol.
, vol.64
, pp. 945-950
-
-
Minshew, N.J.1
Williams, D.L.2
-
24
-
-
34249718861
-
Brain abnormalities in language disorders and in autism
-
vii
-
Herbert M.R., Kenet T. Brain abnormalities in language disorders and in autism. Pediatr. Clin. North Am. 2007, 54:563-583. vii.
-
(2007)
Pediatr. Clin. North Am.
, vol.54
, pp. 563-583
-
-
Herbert, M.R.1
Kenet, T.2
-
25
-
-
70449686651
-
Differential effects on white-matter systems in high-functioning autism and Asperger's syndrome
-
Mcalonan G.M., et al. Differential effects on white-matter systems in high-functioning autism and Asperger's syndrome. Psychol. Med. 2009, 39:1885-1893.
-
(2009)
Psychol. Med.
, vol.39
, pp. 1885-1893
-
-
Mcalonan, G.M.1
-
26
-
-
67651064651
-
Total brain volume and corpus callosum size in medication-naïve adolescents and young adults with autism spectrum disorder
-
Freitag C.M., et al. Total brain volume and corpus callosum size in medication-naïve adolescents and young adults with autism spectrum disorder. Biol. Psychiatry 2009, 66:316-319.
-
(2009)
Biol. Psychiatry
, vol.66
, pp. 316-319
-
-
Freitag, C.M.1
-
27
-
-
33746238755
-
Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity
-
Vidal C.N., et al. Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity. Biol. Psychiatry 2006, 60:218-225.
-
(2006)
Biol. Psychiatry
, vol.60
, pp. 218-225
-
-
Vidal, C.N.1
-
28
-
-
0029135317
-
Reduced size of corpus callosum in autism
-
Egaas B., et al. Reduced size of corpus callosum in autism. Arch. Neurol. 1995, 52:794-801.
-
(1995)
Arch. Neurol.
, vol.52
, pp. 794-801
-
-
Egaas, B.1
-
29
-
-
0344334400
-
Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse
-
Angevine J.B., Sidman R.L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 1961, 192:766-768.
-
(1961)
Nature
, vol.192
, pp. 766-768
-
-
Angevine, J.B.1
Sidman, R.L.2
-
30
-
-
0019983715
-
Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways
-
Silver J., et al. Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways. J. Comp. Neurol. 1982, 210:10-29.
-
(1982)
J. Comp. Neurol.
, vol.210
, pp. 10-29
-
-
Silver, J.1
-
31
-
-
33846881121
-
Commissure formation in the mammalian forebrain
-
Lindwall C., et al. Commissure formation in the mammalian forebrain. Curr. Opin. Neurobiol. 2007, 17:3-14.
-
(2007)
Curr. Opin. Neurobiol.
, vol.17
, pp. 3-14
-
-
Lindwall, C.1
-
32
-
-
4844229901
-
Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human
-
Richards L.J., et al. Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human. Clin. Genet. 2004, 66:276-289.
-
(2004)
Clin. Genet.
, vol.66
, pp. 276-289
-
-
Richards, L.J.1
-
33
-
-
0041883744
-
Development of midline glial populations at the corticoseptal boundary
-
Shu T., et al. Development of midline glial populations at the corticoseptal boundary. J. Neurobiol. 2003, 57:81-94.
-
(2003)
J. Neurobiol.
, vol.57
, pp. 81-94
-
-
Shu, T.1
-
34
-
-
70349170218
-
Understanding the mechanisms of callosal development through the use of transgenic mouse models
-
Donahoo A.L.S., Richards L.J. Understanding the mechanisms of callosal development through the use of transgenic mouse models. Semin. Pediatr. Neurol. 2009, 16:127-142.
-
(2009)
Semin. Pediatr. Neurol.
, vol.16
, pp. 127-142
-
-
Donahoo, A.L.S.1
Richards, L.J.2
-
35
-
-
0038105426
-
The glial sling is a migratory population of developing neurons
-
Shu T., et al. The glial sling is a migratory population of developing neurons. Development 2003, 130:2929-2937.
-
(2003)
Development
, vol.130
, pp. 2929-2937
-
-
Shu, T.1
-
36
-
-
70350493164
-
Transient neuronal populations are required to guide callosal axons: a role for semaphorin 3C
-
Niquille M., et al. Transient neuronal populations are required to guide callosal axons: a role for semaphorin 3C. PLoS Biol. 2009, 7:e1000230.
-
(2009)
PLoS Biol.
, vol.7
-
-
Niquille, M.1
-
37
-
-
0025750798
-
Guidance of callosal axons by radial glia in the developing cerebral cortex
-
Norris C.R., Kalil K. Guidance of callosal axons by radial glia in the developing cerebral cortex. J. Neurosci. 1991, 11:3481-3492.
-
(1991)
J. Neurosci.
, vol.11
, pp. 3481-3492
-
-
Norris, C.R.1
Kalil, K.2
-
38
-
-
0035963067
-
A role for cingulate pioneering axons in the development of the corpus callosum
-
Rash B.G., Richards L.J. A role for cingulate pioneering axons in the development of the corpus callosum. J. Comp. Neurol. 2001, 434:147-157.
-
(2001)
J. Comp. Neurol.
, vol.434
, pp. 147-157
-
-
Rash, B.G.1
Richards, L.J.2
-
39
-
-
0027942159
-
Axons of early generated neurons in cingulate cortex pioneer the corpus callosum
-
Koester S.E., O'Leary D.D. Axons of early generated neurons in cingulate cortex pioneer the corpus callosum. J. Neurosci. 1994, 14:6608-6620.
-
(1994)
J. Neurosci.
, vol.14
, pp. 6608-6620
-
-
Koester, S.E.1
O'Leary, D.D.2
-
40
-
-
0032547697
-
Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse
-
Ozaki H.S., Wahlsten D. Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse. J. Comp. Neurol. 1998, 400:197-206.
-
(1998)
J. Comp. Neurol.
, vol.400
, pp. 197-206
-
-
Ozaki, H.S.1
Wahlsten, D.2
-
41
-
-
69449107600
-
Neuropilin 1-sema signaling regulates crossing of cingulate pioneering axons during development of the corpus callosum
-
Piper M., et al. Neuropilin 1-sema signaling regulates crossing of cingulate pioneering axons during development of the corpus callosum. Cereb. Cortex 2009, 19(Suppl. 1):i11-i21.
-
(2009)
Cereb. Cortex
, vol.19
, Issue.SUPPL. 1
-
-
Piper, M.1
-
42
-
-
0033082452
-
Mena is required for neurulation and commissure formation
-
Lanier L.M., et al. Mena is required for neurulation and commissure formation. Neuron 1999, 22:313-325.
-
(1999)
Neuron
, vol.22
, pp. 313-325
-
-
Lanier, L.M.1
-
43
-
-
0042837878
-
Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo
-
Shu T., et al. Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo. J. Neurosci. 2003, 23:8176-8184.
-
(2003)
J. Neurosci.
, vol.23
, pp. 8176-8184
-
-
Shu, T.1
-
44
-
-
34047138896
-
Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain
-
López-Bendito G., et al. Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain. J. Neurosci. 2007, 27:3395-3407.
-
(2007)
J. Neurosci.
, vol.27
, pp. 3395-3407
-
-
López-Bendito, G.1
-
45
-
-
33745604522
-
Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain
-
Andrews W., et al. Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 2006, 133:2243-2252.
-
(2006)
Development
, vol.133
, pp. 2243-2252
-
-
Andrews, W.1
-
46
-
-
0346156106
-
Dynamic expression patterns of Robo (Robo1 and Robo2) in the developing murine central nervous system
-
Sundaresan V., et al. Dynamic expression patterns of Robo (Robo1 and Robo2) in the developing murine central nervous system. J. Comp. Neurol. 2004, 468:467-481.
-
(2004)
J. Comp. Neurol.
, vol.468
, pp. 467-481
-
-
Sundaresan, V.1
-
47
-
-
0037122889
-
Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain
-
Bagri A., et al. Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 2002, 33:233-248.
-
(2002)
Neuron
, vol.33
, pp. 233-248
-
-
Bagri, A.1
-
48
-
-
32544453658
-
Axonal growth and guidance defects in Frizzled3 knock-out mice: a comparison of diffusion tensor magnetic resonance imaging, neurofilament staining, and genetically directed cell labeling
-
Wang Y., et al. Axonal growth and guidance defects in Frizzled3 knock-out mice: a comparison of diffusion tensor magnetic resonance imaging, neurofilament staining, and genetically directed cell labeling. J. Neurosci. 2006, 26:355-364.
-
(2006)
J. Neurosci.
, vol.26
, pp. 355-364
-
-
Wang, Y.1
-
49
-
-
33744976112
-
The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum
-
Keeble T.R., et al. The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum. J. Neurosci. 2006, 26:5840-5848.
-
(2006)
J. Neurosci.
, vol.26
, pp. 5840-5848
-
-
Keeble, T.R.1
-
50
-
-
65949084004
-
Wnt5a induces simultaneous cortical axon outgrowth and repulsive axon guidance through distinct signaling mechanisms
-
Li L., et al. Wnt5a induces simultaneous cortical axon outgrowth and repulsive axon guidance through distinct signaling mechanisms. J. Neurosci. 2009, 29:5873-5883.
-
(2009)
J. Neurosci.
, vol.29
, pp. 5873-5883
-
-
Li, L.1
-
51
-
-
0030582772
-
Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system
-
Serafini T., et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 1996, 87:1001-1014.
-
(1996)
Cell
, vol.87
, pp. 1001-1014
-
-
Serafini, T.1
-
52
-
-
34848909881
-
Diffusion tensor magnetic resonance imaging and tract-tracing analysis of Probst bundle structure in Netrin1- and DCC-deficient mice
-
Ren T., et al. Diffusion tensor magnetic resonance imaging and tract-tracing analysis of Probst bundle structure in Netrin1- and DCC-deficient mice. J. Neurosci. 2007, 27:10345-10349.
-
(2007)
J. Neurosci.
, vol.27
, pp. 10345-10349
-
-
Ren, T.1
-
53
-
-
0030995125
-
Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene
-
Fazeli A., et al. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 1997, 386:796-804.
-
(1997)
Nature
, vol.386
, pp. 796-804
-
-
Fazeli, A.1
-
54
-
-
0033540256
-
Expression of the netrin-1 receptor, deleted in colorectal cancer (DCC), is largely confined to projecting neurons in the developing forebrain
-
Shu T., et al. Expression of the netrin-1 receptor, deleted in colorectal cancer (DCC), is largely confined to projecting neurons in the developing forebrain. J. Comp. Neurol. 2000, 416:201-212.
-
(2000)
J. Comp. Neurol.
, vol.416
, pp. 201-212
-
-
Shu, T.1
-
55
-
-
0038686623
-
Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development
-
Gu C., et al. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev. Cell 2003, 5:45-57.
-
(2003)
Dev. Cell
, vol.5
, pp. 45-57
-
-
Gu, C.1
-
56
-
-
32544438574
-
Multiple Eph receptors and B-class ephrins regulate midline crossing of corpus callosum fibers in the developing mouse forebrain
-
Mendes S.W., et al. Multiple Eph receptors and B-class ephrins regulate midline crossing of corpus callosum fibers in the developing mouse forebrain. J. Neurosci. 2006, 26:882-892.
-
(2006)
J. Neurosci.
, vol.26
, pp. 882-892
-
-
Mendes, S.W.1
-
57
-
-
0344198005
-
Corpus callosum deficiency in transgenic mice expressing a truncated ephrin-A receptor
-
Hu Z., et al. Corpus callosum deficiency in transgenic mice expressing a truncated ephrin-A receptor. J. Neurosci. 2003, 23:10963-10970.
-
(2003)
J. Neurosci.
, vol.23
, pp. 10963-10970
-
-
Hu, Z.1
-
58
-
-
11244281175
-
Large-scale maintenance of dual projections by callosal and frontal cortical projection neurons in adult mice
-
Mitchell B.D., Macklis J.D. Large-scale maintenance of dual projections by callosal and frontal cortical projection neurons in adult mice. J. Comp. Neurol. 2005, 482:17-32.
-
(2005)
J. Comp. Neurol.
, vol.482
, pp. 17-32
-
-
Mitchell, B.D.1
Macklis, J.D.2
-
59
-
-
28644447375
-
Exuberance in the development of cortical networks
-
Innocenti G.M., Price D.J. Exuberance in the development of cortical networks. Nat. Rev. Neurosci. 2005, 6:955-965.
-
(2005)
Nat. Rev. Neurosci.
, vol.6
, pp. 955-965
-
-
Innocenti, G.M.1
Price, D.J.2
-
60
-
-
35448976797
-
Activity-dependent development of callosal projections in the somatosensory cortex
-
Wang C., et al. Activity-dependent development of callosal projections in the somatosensory cortex. J. Neurosci. 2007, 27:11334-11342.
-
(2007)
J. Neurosci.
, vol.27
, pp. 11334-11342
-
-
Wang, C.1
-
61
-
-
34250800258
-
Evidence for activity-dependent cortical wiring: formation of interhemispheric connections in neonatal mouse visual cortex requires projection neuron activity
-
Mizuno H., et al. Evidence for activity-dependent cortical wiring: formation of interhemispheric connections in neonatal mouse visual cortex requires projection neuron activity. J. Neurosci. 2007, 27:6760-6770.
-
(2007)
J. Neurosci.
, vol.27
, pp. 6760-6770
-
-
Mizuno, H.1
-
62
-
-
75749135649
-
Pre-synaptic and post-synaptic neuronal activity supports the axon development of callosal projection neurons during different post-natal periods in the mouse cerebral cortex
-
Mizuno H., et al. Pre-synaptic and post-synaptic neuronal activity supports the axon development of callosal projection neurons during different post-natal periods in the mouse cerebral cortex. Eur. J. Neurosci. 2010, 31:410-424.
-
(2010)
Eur. J. Neurosci.
, vol.31
, pp. 410-424
-
-
Mizuno, H.1
-
63
-
-
34147131681
-
Axons of callosal neurons bifurcate transiently at the white matter before consolidating an interhemispheric projection
-
Garcez P.P., et al. Axons of callosal neurons bifurcate transiently at the white matter before consolidating an interhemispheric projection. Eur. J. Neurosci. 2007, 25:1384-1394.
-
(2007)
Eur. J. Neurosci.
, vol.25
, pp. 1384-1394
-
-
Garcez, P.P.1
-
64
-
-
0016827911
-
Interhemispheric neocortical connections of the corpus callosum in the normal mouse: a study based on anterograde and retrograde methods
-
Yorke C.H., Caviness V.S. Interhemispheric neocortical connections of the corpus callosum in the normal mouse: a study based on anterograde and retrograde methods. J. Comp. Neurol. 1975, 164:233-245.
-
(1975)
J. Comp. Neurol.
, vol.164
, pp. 233-245
-
-
Yorke, C.H.1
Caviness, V.S.2
-
65
-
-
0023201339
-
Morphology and synaptic connections of crossed corticostriatal neurons in the rat
-
Wilson C.J. Morphology and synaptic connections of crossed corticostriatal neurons in the rat. J. Comp. Neurol. 1987, 263:567-580.
-
(1987)
J. Comp. Neurol.
, vol.263
, pp. 567-580
-
-
Wilson, C.J.1
-
66
-
-
0031975031
-
Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I
-
Cauller L.J., et al. Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. J. Comp. Neurol. 1998, 390:297-310.
-
(1998)
J. Comp. Neurol.
, vol.390
, pp. 297-310
-
-
Cauller, L.J.1
-
67
-
-
0041807596
-
Single-cell study of motor cortex projections to the barrel field in rats
-
Veinante P., Deschenes M. Single-cell study of motor cortex projections to the barrel field in rats. J. Comp. Neurol. 2003, 464:98-103.
-
(2003)
J. Comp. Neurol.
, vol.464
, pp. 98-103
-
-
Veinante, P.1
Deschenes, M.2
-
68
-
-
60049100527
-
Variability of homotopic and heterotopic callosal connectivity in partial agenesis of the corpus callosum: a 3T diffusion tensor imaging and Q-Ball tractography study
-
Wahl M., et al. Variability of homotopic and heterotopic callosal connectivity in partial agenesis of the corpus callosum: a 3T diffusion tensor imaging and Q-Ball tractography study. AJNR Am. J. Neuroradiol. 2008, 30:282-289.
-
(2008)
AJNR Am. J. Neuroradiol.
, vol.30
, pp. 282-289
-
-
Wahl, M.1
-
69
-
-
34247548430
-
Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections
-
Petreanu L., et al. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 2007, 10:663-668.
-
(2007)
Nat. Neurosci.
, vol.10
, pp. 663-668
-
-
Petreanu, L.1
-
70
-
-
42449114786
-
Nuclear factor I gene expression in the developing forebrain
-
Plachez C., et al. Nuclear factor I gene expression in the developing forebrain. J. Comp. Neurol. 2008, 508:385-401.
-
(2008)
J. Comp. Neurol.
, vol.508
, pp. 385-401
-
-
Plachez, C.1
-
71
-
-
33745698908
-
Midline radial glia translocation and corpus callosum formation require FGF signaling
-
Smith K.M., et al. Midline radial glia translocation and corpus callosum formation require FGF signaling. Nat. Neurosci. 2006, 9:787-797.
-
(2006)
Nat. Neurosci.
, vol.9
, pp. 787-797
-
-
Smith, K.M.1
-
72
-
-
29144532186
-
Development of midline cell types and commissural axon tracts requires Fgfr1 in the cerebrum
-
Tole S., et al. Development of midline cell types and commissural axon tracts requires Fgfr1 in the cerebrum. Dev. Biol. 2006, 289:141-151.
-
(2006)
Dev. Biol.
, vol.289
, pp. 141-151
-
-
Tole, S.1
-
73
-
-
0037154872
-
Transcriptional regulation of cortical neuron migration by POU domain factors
-
McEvilly R.J., et al. Transcriptional regulation of cortical neuron migration by POU domain factors. Science 2002, 295:1528-1532.
-
(2002)
Science
, vol.295
, pp. 1528-1532
-
-
McEvilly, R.J.1
-
74
-
-
0037099207
-
Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons
-
Sugitani Y., et al. Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev. 2002, 16:1760-1765.
-
(2002)
Genes Dev.
, vol.16
, pp. 1760-1765
-
-
Sugitani, Y.1
-
75
-
-
4744376267
-
Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex
-
Nieto M., et al. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex. J. Comp. Neurol. 2004, 479:168-180.
-
(2004)
J. Comp. Neurol.
, vol.479
, pp. 168-180
-
-
Nieto, M.1
-
76
-
-
47649106432
-
Cux-2 controls the proliferation of neuronal intermediate precursors of the cortical subventricular zone
-
Cubelos B., et al. Cux-2 controls the proliferation of neuronal intermediate precursors of the cortical subventricular zone. Cereb. Cortex 2007, 18:1758-1770.
-
(2007)
Cereb. Cortex
, vol.18
, pp. 1758-1770
-
-
Cubelos, B.1
-
77
-
-
28044463122
-
Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex
-
Chen B., et al. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:17184-17189.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 17184-17189
-
-
Chen, B.1
-
78
-
-
29144503953
-
Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex
-
Chen J.G., et al. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:17792-17797.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 17792-17797
-
-
Chen, J.G.1
-
79
-
-
70349554036
-
AP2γ regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex
-
Pinto L., et al. AP2γ regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex. Nat. Neurosci. 2009, 12:1229-1237.
-
(2009)
Nat. Neurosci.
, vol.12
, pp. 1229-1237
-
-
Pinto, L.1
-
80
-
-
77953251284
-
Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex
-
Cubelos B., et al. Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron 2010, 66:523-535.
-
(2010)
Neuron
, vol.66
, pp. 523-535
-
-
Cubelos, B.1
-
81
-
-
70349623195
-
Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons
-
Molyneaux B.J., et al. Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons. J. Neurosci. 2009, 29:12343-12354.
-
(2009)
J. Neurosci.
, vol.29
, pp. 12343-12354
-
-
Molyneaux, B.J.1
-
82
-
-
2442434686
-
Stage-specific and opposing roles of BDNF, NT-3 and bFGF in differentiation of purified callosal projection neurons toward cellular repair of complex circuitry
-
Catapano L.A., et al. Stage-specific and opposing roles of BDNF, NT-3 and bFGF in differentiation of purified callosal projection neurons toward cellular repair of complex circuitry. Eur. J. Neurosci. 2004, 19:2421-2434.
-
(2004)
Eur. J. Neurosci.
, vol.19
, pp. 2421-2434
-
-
Catapano, L.A.1
-
83
-
-
0035890159
-
Specific neurotrophic factors support the survival of cortical projection neurons at distinct stages of development
-
Catapano L.A., et al. Specific neurotrophic factors support the survival of cortical projection neurons at distinct stages of development. J. Neurosci. 2001, 21:8863-8872.
-
(2001)
J. Neurosci.
, vol.21
, pp. 8863-8872
-
-
Catapano, L.A.1
-
84
-
-
33750492639
-
IGF-I specifically enhances axon outgrowth of corticospinal motor neurons
-
Ozdinler P.H., Macklis J.D. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat. Neurosci. 2006, 9:1371-1381.
-
(2006)
Nat. Neurosci.
, vol.9
, pp. 1371-1381
-
-
Ozdinler, P.H.1
Macklis, J.D.2
-
85
-
-
51149107212
-
A Novel purification method for CNS projection neurons leads to the identification of brain vascular cells as a source of trophic support for corticospinal motor neurons
-
Dugas J., et al. A Novel purification method for CNS projection neurons leads to the identification of brain vascular cells as a source of trophic support for corticospinal motor neurons. J. Neurosci. 2008, 28:8294-8305.
-
(2008)
J. Neurosci.
, vol.28
, pp. 8294-8305
-
-
Dugas, J.1
-
86
-
-
0024109174
-
Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning
-
Barres B.A., et al. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1988, 1:791-803.
-
(1988)
Neuron
, vol.1
, pp. 791-803
-
-
Barres, B.A.1
-
87
-
-
38349029763
-
Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum
-
Arlotta P., et al. Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J. Neurosci. 2008, 28:622-632.
-
(2008)
J. Neurosci.
, vol.28
, pp. 622-632
-
-
Arlotta, P.1
-
88
-
-
33644769073
-
Comparative aspects of cerebral cortical development
-
Molnar Z., et al. Comparative aspects of cerebral cortical development. Eur. J. Neurosci. 2006, 23:921-934.
-
(2006)
Eur. J. Neurosci.
, vol.23
, pp. 921-934
-
-
Molnar, Z.1
-
90
-
-
67651202042
-
Phylogeny of the telencephalic subventricular zone in sauropsids: evidence for the sequential evolution of pallial and subpallial subventricular zones
-
Charvet C.J., et al. Phylogeny of the telencephalic subventricular zone in sauropsids: evidence for the sequential evolution of pallial and subpallial subventricular zones. Brain Behav. Evol. 2009, 73:285-294.
-
(2009)
Brain Behav. Evol.
, vol.73
, pp. 285-294
-
-
Charvet, C.J.1
-
91
-
-
0036133288
-
Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey
-
Smart I.H., et al. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 2002, 12:37-53.
-
(2002)
Cereb. Cortex
, vol.12
, pp. 37-53
-
-
Smart, I.H.1
-
92
-
-
0001725397
-
Size, distribution, and number of fibres in the human corpus callosum
-
Tomasch J. Size, distribution, and number of fibres in the human corpus callosum. Anat. Rec. 1954, 119:119-135.
-
(1954)
Anat. Rec.
, vol.119
, pp. 119-135
-
-
Tomasch, J.1
-
93
-
-
77952867780
-
OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling
-
Fietz S.A., et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci. 2010, 13:690-699.
-
(2010)
Nat. Neurosci.
, vol.13
, pp. 690-699
-
-
Fietz, S.A.1
-
94
-
-
77950076985
-
Neurogenic radial glia in the outer subventricular zone of human neocortex
-
Hansen D.V., et al. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 2010, 464:554-561.
-
(2010)
Nature
, vol.464
, pp. 554-561
-
-
Hansen, D.V.1
-
95
-
-
34047107193
-
Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis
-
Baala L., et al. Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis. Nat. Genet. 2007, 39:454-456.
-
(2007)
Nat. Genet.
, vol.39
, pp. 454-456
-
-
Baala, L.1
-
96
-
-
51949109503
-
The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone
-
Arnold S.J., et al. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev. 2008, 22:2479-2484.
-
(2008)
Genes Dev.
, vol.22
, pp. 2479-2484
-
-
Arnold, S.J.1
-
97
-
-
53049083077
-
Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex
-
Sessa A., et al. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 2008, 60:56-69.
-
(2008)
Neuron
, vol.60
, pp. 56-69
-
-
Sessa, A.1
-
98
-
-
34047266827
-
Molecular markers distinguishing supragranular and infragranular layers in the human prefrontal cortex
-
Arion D., et al. Molecular markers distinguishing supragranular and infragranular layers in the human prefrontal cortex. Eur. J. Neurosci. 2007, 25:1843-1854.
-
(2007)
Eur. J. Neurosci.
, vol.25
, pp. 1843-1854
-
-
Arion, D.1
|