메뉴 건너뛰기




Volumn 75, Issue 1, 2011, Pages 132-138

The prediction of seedy grape drying rate using a neural network method

Author keywords

Drying; Modelling; Neural networks; Seedy grape

Indexed keywords

ALTERNATIVE APPROACH; CORRELATION COEFFICIENT; DRYING RATES; DRYING SYSTEMS; FNN MODELS; GRAPE DRYING; LINEAR REGRESSION MODELS; MEAN ABSOLUTE ERROR; MODELLING; NEURAL NETWORK METHOD; NON-LINEAR REGRESSION ANALYSIS; NONLINEAR BEHAVIOURS; ROOT MEAN SQUARE ERRORS; SEEDY GRAPE; SOLAR AIR COLLECTOR; THIN LAYER DRYING;

EID: 78650511788     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2010.10.008     Document Type: Article
Times cited : (98)

References (15)
  • 3
    • 0000160126 scopus 로고
    • Drying of food materials
    • Hemisphere Publishing Corp, New York, A.S. Mujumdar (Ed.)
    • Bruin S., Luyben K.C.A.M. Drying of food materials. Advances in Drying 1980, 155-215. Hemisphere Publishing Corp, New York. A.S. Mujumdar (Ed.).
    • (1980) Advances in Drying , pp. 155-215
    • Bruin, S.1    Luyben, K.C.A.M.2
  • 4
    • 70149125363 scopus 로고    scopus 로고
    • Design of a new solar dryer system with swirling flow for drying seeded grape
    • Çakmak G., Yi{dotless}ldi{dotless}z C. Design of a new solar dryer system with swirling flow for drying seeded grape. International Communications in Heat and Mass Transfer 2009, 36:984-990.
    • (2009) International Communications in Heat and Mass Transfer , vol.36 , pp. 984-990
    • Çakmak, G.1    Yildiz, C.2
  • 5
    • 34547525049 scopus 로고    scopus 로고
    • Comparison of genetic algorithm and neural network approaches for the drying process of carrot
    • Erenturk S., Erenturk K. Comparison of genetic algorithm and neural network approaches for the drying process of carrot. Journal of Food Engineering 2007, 78:905-912.
    • (2007) Journal of Food Engineering , vol.78 , pp. 905-912
    • Erenturk, S.1    Erenturk, K.2
  • 9
    • 34547116654 scopus 로고    scopus 로고
    • Adaptive neurofuzzy computing technique for evapotranspiration estimation
    • Kişi Ö., Öztürk Ö. Adaptive neurofuzzy computing technique for evapotranspiration estimation. Journal of Irrigation and Drainage Engineering 2007, 133:368-379.
    • (2007) Journal of Irrigation and Drainage Engineering , vol.133 , pp. 368-379
    • Kişi, Ö.1    Öztürk, Ö.2
  • 10
    • 33846614137 scopus 로고    scopus 로고
    • A neural network for predicting moisture content of grain drying process using genetic algorithm
    • Liu X., Chen X., Wu W., Peng G. A neural network for predicting moisture content of grain drying process using genetic algorithm. Food Control 2007, 18:928-933.
    • (2007) Food Control , vol.18 , pp. 928-933
    • Liu, X.1    Chen, X.2    Wu, W.3    Peng, G.4
  • 12
    • 77954501357 scopus 로고
    • Accelerated method for determining the kinetic model of ascorbic acid loss during dehydration
    • Saguy J., Mizrahi S., Villota R., Karel M. Accelerated method for determining the kinetic model of ascorbic acid loss during dehydration. Journal of Food Science 1978, 43:1861.
    • (1978) Journal of Food Science , vol.43 , pp. 1861
    • Saguy, J.1    Mizrahi, S.2    Villota, R.3    Karel, M.4
  • 14
    • 64949176652 scopus 로고    scopus 로고
    • Neural network approach for food temperature prediction during solar drying
    • Tripathy P.P., Kumar S. Neural network approach for food temperature prediction during solar drying. International Journal of Thermal Sciences 2009, 48:1452-1459.
    • (2009) International Journal of Thermal Sciences , vol.48 , pp. 1452-1459
    • Tripathy, P.P.1    Kumar, S.2
  • 15
    • 0036844442 scopus 로고    scopus 로고
    • Prediction of performance indices and optimal parameters of rough rice drying using neural networks
    • Zhang Q., Yang S.X., Mittal G.S., Yi S. Prediction of performance indices and optimal parameters of rough rice drying using neural networks. Biosystems Engineering 2002, 83(3):281-290.
    • (2002) Biosystems Engineering , vol.83 , Issue.3 , pp. 281-290
    • Zhang, Q.1    Yang, S.X.2    Mittal, G.S.3    Yi, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.