-
1
-
-
78650396263
-
-
Suzuki, Y.; Toda, T.; Mukai, T. Heterocycles 1976, 4, 739-742
-
(1976)
Heterocycles
, vol.4
, pp. 739-742
-
-
Suzuki, Y.1
Toda, T.2
Mukai, T.3
-
2
-
-
0009138597
-
-
Bryant, J. A.; Helgeson, R. C.; Knobler, C. B.; de Grandpre, M. P.; Cram, D. J. J. Org. Chem. 1990, 55, 4622-4634
-
(1990)
J. Org. Chem.
, vol.55
, pp. 4622-4634
-
-
Bryant, J.A.1
Helgeson, R.C.2
Knobler, C.B.3
De Grandpre, M.P.4
Cram, D.J.5
-
3
-
-
0003086542
-
-
Twamley, B.; Haubrich, S. T.; Power, P. P. Adv. Organomet. Chem. 1999, 44, 1-65
-
(1999)
Adv. Organomet. Chem.
, vol.44
, pp. 1-65
-
-
Twamley, B.1
Haubrich, S.T.2
Power, P.P.3
-
6
-
-
37049066771
-
-
Bishop, P. T.; Dilworth, J. R.; Nicholson, T.; Zubieta, J. Dalton Trans. 1991, 385-392
-
(1991)
Dalton Trans.
, pp. 385-392
-
-
Bishop, P.T.1
Dilworth, J.R.2
Nicholson, T.3
Zubieta, J.4
-
7
-
-
10744230441
-
-
Lawson Daku, L. M.; Pécaut, J.; Lenormand-Foucaut, A.; Vieux-Melchior, B.; Iveson, P.; Jordanov, J. Inorg. Chem. 2003, 42, 6824-6850
-
(2003)
Inorg. Chem.
, vol.42
, pp. 6824-6850
-
-
Lawson Daku, L.M.1
Pécaut, J.2
Lenormand-Foucaut, A.3
Vieux-Melchior, B.4
Iveson, P.5
Jordanov, J.6
-
10
-
-
34548533133
-
-
Ohta, S.; Ohki, Y.; Ikagawa, Y.; Suizu, R.; Tatsumi, K. J. Organomet. Chem. 2007, 692, 4792-4799
-
(2007)
J. Organomet. Chem.
, vol.692
, pp. 4792-4799
-
-
Ohta, S.1
Ohki, Y.2
Ikagawa, Y.3
Suizu, R.4
Tatsumi, K.5
-
12
-
-
33751127094
-
-
Ellison, J. J.; Ruhlandt-Senge, K.; Power, P. P. Angew. Chem., Int. Ed. 1994, 33, 1178-1180
-
(1994)
Angew. Chem., Int. Ed.
, vol.33
, pp. 1178-1180
-
-
Ellison, J.J.1
Ruhlandt-Senge, K.2
Power, P.P.3
-
14
-
-
0000704556
-
-
Hauptmann, R.; Kliss, R.; Schneider, J.; Henkel, G. Z. Anorg. Allg. Chem. 1998, 624, 1927-1936
-
(1998)
Z. Anorg. Allg. Chem.
, vol.624
, pp. 1927-1936
-
-
Hauptmann, R.1
Kliss, R.2
Schneider, J.3
Henkel, G.4
-
16
-
-
0002843157
-
-
Ellison, J. J.; Ruhlandt-Senge, K.; Hope, H. H.; Power, P. P. Inorg. Chem. 1995, 34, 49-54
-
(1995)
Inorg. Chem.
, vol.34
, pp. 49-54
-
-
Ellison, J.J.1
Ruhlandt-Senge, K.2
Hope, H.H.3
Power, P.P.4
-
18
-
-
84951603046
-
-
Schulz Lang, E.; Maichle-Mössmer, C.; Strähle, J. Z. Anorg. Allg. Chem. 1994, 620, 1678-1685
-
(1994)
Z. Anorg. Allg. Chem.
, vol.620
, pp. 1678-1685
-
-
Schulz Lang, E.1
Maichle-Mössmer, C.2
Strähle, J.3
-
19
-
-
77950145038
-
-
Ammam, M.; Zakai, U. I.; Wilson, G. S.; Glass, R. S. Pure Appl. Chem. 2010, 82, 555-563
-
(2010)
Pure Appl. Chem.
, vol.82
, pp. 555-563
-
-
Ammam, M.1
Zakai, U.I.2
Wilson, G.S.3
Glass, R.S.4
-
20
-
-
33646794936
-
-
Varala, R.; Ramu, E.; Adapa, S. R. Bull. Chem. Soc. Jpn. 2006, 79, 140-141
-
(2006)
Bull. Chem. Soc. Jpn.
, vol.79
, pp. 140-141
-
-
Varala, R.1
Ramu, E.2
Adapa, S.R.3
-
21
-
-
14844303984
-
-
Varala, R.; Ramu, E.; Alam, M. M.; Adapa, S. R. Chem. Lett. 2004, 33, 1614-1615
-
(2004)
Chem. Lett.
, vol.33
, pp. 1614-1615
-
-
Varala, R.1
Ramu, E.2
Alam, M.M.3
Adapa, S.R.4
-
22
-
-
4143053592
-
-
Varala, R.; Ramu, E.; Alam, M. M.; Adapa, S. R. Synlett 2004, 1747-1750
-
(2004)
Synlett
, pp. 1747-1750
-
-
Varala, R.1
Ramu, E.2
Alam, M.M.3
Adapa, S.R.4
-
23
-
-
78650362028
-
-
Although the peak shapes observed for 1c and 3a can be fitted well using two atropisomers, those observed for 2a are not as well-fitted. A better fit is obtained using three atropisomers but the calculations outlined later in the paper do not support another conformer for 2a
-
Although the peak shapes observed for 1c and 3a can be fitted well using two atropisomers, those observed for 2a are not as well-fitted. A better fit is obtained using three atropisomers but the calculations outlined later in the paper do not support another conformer for 2a.
-
-
-
-
24
-
-
66149121377
-
-
The van der Waals radius for S, Se, and Te is 1.80, 1.90, and 2.06, respectively
-
The van der Waals radius for S, Se, and Te is 1.80, 1.90, and 2.06, respectively: Mantina, M.; Chamberlin, A. C.; Valero, R.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A 2009, 113, 5806-5812
-
(2009)
J. Phys. Chem. A
, vol.113
, pp. 5806-5812
-
-
Mantina, M.1
Chamberlin, A.C.2
Valero, R.3
Cramer, C.J.4
Truhlar, D.G.5
-
25
-
-
66249125017
-
-
Jain, R.; Bally, T.; Rablen, P. R. J. Org. Chem. 2009, 74, 4017-4023
-
(2009)
J. Org. Chem.
, vol.74
, pp. 4017-4023
-
-
Jain, R.1
Bally, T.2
Rablen, P.R.3
-
26
-
-
0003909854
-
-
2 nd; Wiley: New York
-
Günther, H. NMR Spectroscopy, 2 nd; Wiley: New York, 1992; pp 343.
-
(1992)
NMR Spectroscopy
, pp. 343
-
-
Günther, H.1
-
27
-
-
78650316857
-
-
To quantitate this effect, we calculated the potential for the interaction of dimethylsulfide or dimethylselenide, respectively, with a benzene H-atom as depicted. The equilibrium distance was 2.8 Å for S and 3.0 Å for Se. At the transition states for rotation around a lateral phenyl group in 1a the S···H distance is ca. 2.1 Å and in 2a it is 2.3 Å. At these distances the energy is higher by 13.2 kJ/mol in the model complex for X = S and by 16.3 kJ/mol for X = Se. The difference between these two numbers (3.1 kJ/mol) accounts for a large part of the differences in the enthalpies of activation for rotation of a lateral phenyl group in 1a and 2a
-
To quantitate this effect, we calculated the potential for the interaction of dimethylsulfide or dimethylselenide, respectively, with a benzene H-atom as depicted. The equilibrium distance was 2.8 Å for S and 3.0 Å for Se. At the transition states for rotation around a lateral phenyl group in 1a the S···H distance is ca. 2.1 Å and in 2a it is 2.3 Å. At these distances the energy is higher by 13.2 kJ/mol in the model complex for X = S and by 16.3 kJ/mol for X = Se. The difference between these two numbers (3.1 kJ/mol) accounts for a large part of the differences in the enthalpies of activation for rotation of a lateral phenyl group in 1a and 2a.
-
-
-
-
28
-
-
33845375368
-
-
House, H. O.; Hrabie, J. A.; VanDerveer, D. J. Org. Chem. 1986, 51, 921-929
-
(1986)
J. Org. Chem.
, vol.51
, pp. 921-929
-
-
House, H.O.1
Hrabie, J.A.2
Vanderveer, D.3
-
29
-
-
78650345649
-
-
erestingly, House et al. (23) report a minor component in acetate 10b that rapidly interconverts with the syn isomer. They assign the structure of this minor component to the syn isomer with the OAc cis to the aryl methyl groups which equilibrates with the major syn isomer with the OAc trans to the aryl methyl groups. If this assignment for the minor component is correct, then the rotation barrier about the aryl-O bond in 10b is greater than the rotation barriers about the aryl-X bond (X = S, Se, Te) in the substituted and unsubstituted m -terphenyl chalcogenoethers 1-3
-
Interestingly, House et al. (23) report a minor component in acetate 10b that rapidly interconverts with the syn isomer. They assign the structure of this minor component to the syn isomer with the OAc cis to the aryl methyl groups which equilibrates with the major syn isomer with the OAc trans to the aryl methyl groups. If this assignment for the minor component is correct, then the rotation barrier about the aryl-O bond in 10b is greater than the rotation barriers about the aryl-X bond (X = S, Se, Te) in the substituted and unsubstituted m -terphenyl chalcogenoethers 1-3.
-
-
-
-
30
-
-
34447319097
-
-
Lunazzi, L.; Mancinelli, M.; Mazzanti, A. J. Org. Chem. 2007, 72, 5391-5394
-
(2007)
J. Org. Chem.
, vol.72
, pp. 5391-5394
-
-
Lunazzi, L.1
Mancinelli, M.2
Mazzanti, A.3
-
32
-
-
64549117421
-
-
report a high barrier (Δ G = 38.0 kcal/mol at 140 °C) for racemization of chiral anthraquinone 11. The configurational stability of anthraquinone 11 was ascribed to steric interaction between the methylnaphthyl substituent and anthraquinone carbonyl group. However, this is only remotely related to the systems studied in the present paper
-
Lunazzi, L.; Mancinelli, M.; Mazzanti, A. J. Org. Chem. 2009, 74, 1345-1348 report a high barrier (Δ G = 38.0 kcal/mol at 140 °C) for racemization of chiral anthraquinone 11. The configurational stability of anthraquinone 11 was ascribed to steric interaction between the methylnaphthyl substituent and anthraquinone carbonyl group. However, this is only remotely related to the systems studied in the present paper.
-
(2009)
J. Org. Chem.
, vol.74
, pp. 1345-1348
-
-
Lunazzi, L.1
Mancinelli, M.2
Mazzanti, A.3
-
33
-
-
0002714675
-
-
Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925
-
(1978)
J. Org. Chem.
, vol.43
, pp. 2923-2925
-
-
Still, W.C.1
Kahn, M.2
Mitra, A.3
-
35
-
-
84962382681
-
-
Gaussian, the WP04 functional is invoked by specifying the BLYP keyword and adding iop(3/76=1000001189,3/77=0961409999,3/78=0000109999) to the keyword line
-
Wiitala, K. W.; Hoye, T. R.; Cramer, C. J. J. Chem. Theory Comput. 2006, 2, 1085-1092 In Gaussian, the WP04 functional is invoked by specifying the BLYP keyword and adding iop(3/76=1000001189,3/77=0961409999,3/78=0000109999) to the keyword line.
-
(2006)
J. Chem. Theory Comput.
, vol.2
, pp. 1085-1092
-
-
Wiitala, K.W.1
Hoye, T.R.2
Cramer, C.J.3
-
38
-
-
43649108963
-
-
For an overview of these methods, see
-
For an overview of these methods, see: Schwabe, T.; Grimme., S. Acc. Chem. Res. 2008, 41, 569-579
-
(2008)
Acc. Chem. Res.
, vol.41
, pp. 569-579
-
-
Schwabe, T.1
Grimme, S.2
-
39
-
-
78650314562
-
-
and Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, (for complete reference, see Supporting Information)
-
Frisch, M. J. et al. Gaussian 03, Revision E.01 and Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2003, (for complete reference, see Supporting Information).
-
(2003)
Gaussian 03, Revision E.01
-
-
Frisch, M.J.1
|