메뉴 건너뛰기




Volumn 14, Issue 1, 2011, Pages 24-31

Latent Class Procedures: Applications to Organizational Research

Author keywords

latent class analysis; latent class growth models; profile analysis

Indexed keywords


EID: 78650162548     PISSN: 10944281     EISSN: 15527425     Source Type: Journal    
DOI: 10.1177/1094428110383988     Document Type: Article
Times cited : (284)

References (28)
  • 1
    • 0034237933 scopus 로고    scopus 로고
    • A probabilistic clustering model for variables of mixed type
    • Bacher, J. (2000). A probabilistic clustering model for variables of mixed type. Quality and Quantity, 34, 223-235.
    • (2000) Quality and Quantity , vol.34 , pp. 223-235
    • Bacher, J.1
  • 3
    • 0142136680 scopus 로고    scopus 로고
    • Overextraction of latent trajectory classes: Much ado about nothing? Reply to Rindskopf (2003), Muthen (2003), and Cudeck and Henly (2003)
    • Bauer, D.J., & Curran, P.J. (2003). Overextraction of latent trajectory classes: Much ado about nothing? Reply to Rindskopf (2003), Muthen (2003), and Cudeck and Henly (2003). Psychological Methods, 8, 384-393.
    • (2003) Psychological Methods , vol.8 , pp. 384-393
    • Bauer, D.J.1    Curran, P.J.2
  • 4
    • 34548538064 scopus 로고    scopus 로고
    • Multilevel methods: Future directions in measurement, longitudinal analyses, and nonnormal outcomes
    • Bliese, P.D., Chan, D., & Ployhart, R.E. (2007). Multilevel methods: Future directions in measurement, longitudinal analyses, and nonnormal outcomes. Organizational Research Methods, 10, 551-563.
    • (2007) Organizational Research Methods , vol.10 , pp. 551-563
    • Bliese, P.D.1    Chan, D.2    Ployhart, R.E.3
  • 5
    • 78650118259 scopus 로고    scopus 로고
    • Using mixed-model item response theory to analyze organizational survey responses: An illustration using the Job Descriptive Index
    • Carter, N.T., Dalal, D.K., Lake, C.J., Lin, B.C., & Zickar, M.J. (2011). Using mixed-model item response theory to analyze organizational survey responses: An illustration using the Job Descriptive Index. Organizational Research Methods, 14, 116-146.
    • (2011) Organizational Research Methods , vol.14 , pp. 116-146
    • Carter, N.T.1    Dalal, D.K.2    Lake, C.J.3    Lin, B.C.4    Zickar, M.J.5
  • 6
    • 0000683701 scopus 로고
    • Scrutinizing psychological tests: Measurement equivalence and equivalent relations with external variables
    • Drasgow, F. (1984). Scrutinizing psychological tests: Measurement equivalence and equivalent relations with external variables. Psychological Bulletin, 95, 134-135.
    • (1984) Psychological Bulletin , vol.95 , pp. 134-135
    • Drasgow, F.1
  • 7
    • 78650099730 scopus 로고    scopus 로고
    • The psychometric latent agreement model (PLAM) for discrete latent variables measured by multiple items
    • Dumenci, L. (2011). The psychometric latent agreement model (PLAM) for discrete latent variables measured by multiple items. Organizational Research Methods, 14, 91-115.
    • (2011) Organizational Research Methods , vol.14 , pp. 91-115
    • Dumenci, L.1
  • 8
    • 0012305994 scopus 로고
    • Three multivariate models: Factor analysis, latent structure analysis, and latent profile analysis
    • Gibson, W.A. (1959). Three multivariate models: Factor analysis, latent structure analysis, and latent profile analysis. Psychometrika, 24, 229-252.
    • (1959) Psychometrika , vol.24 , pp. 229-252
    • Gibson, W.A.1
  • 9
    • 0000051498 scopus 로고
    • Measures of association for cross-classifications: II. Further discussion and references
    • Goodman, L.A., & Kruskal, W.H. (1959). Measures of association for cross-classifications: II. Further discussion and references. Journal of the American Statistical Association, 54, 123-163.
    • (1959) Journal of the American Statistical Association , vol.54 , pp. 123-163
    • Goodman, L.A.1    Kruskal, W.H.2
  • 11
    • 78650107548 scopus 로고    scopus 로고
    • Identifying organizational faultlines with latent class cluster analysis
    • Lawrence, B.S., & Zyphur, M.J. (2011). Identifying organizational faultlines with latent class cluster analysis. Organizational Research Methods, 14, 32-57.
    • (2011) Organizational Research Methods , vol.14 , pp. 32-57
    • Lawrence, B.S.1    Zyphur, M.J.2
  • 12
    • 0038183179 scopus 로고    scopus 로고
    • Testing the number of components in a normal mixture
    • Lo, Y., Mendell, N.R., & Rubin, D.B. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767-778.
    • (2001) Biometrika , vol.88 , pp. 767-778
    • Lo, Y.1    Mendell, N.R.2    Rubin, D.B.3
  • 13
  • 14
    • 78650081337 scopus 로고    scopus 로고
    • A multifoci person-centered perspective on workplace affective commitment: A latent profile/factor mixture analysis
    • Morin, A.J.S., Morizot, J., Boudrias, J.-S., & Madore, I. (2011). A multifoci person-centered perspective on workplace affective commitment: A latent profile/factor mixture analysis. Organizational Research Methods, 14, 58-90.
    • (2011) Organizational Research Methods , vol.14 , pp. 58-90
    • Morin, A.J.S.1    Morizot, J.2    Boudrias, J.-S.3    Madore, I.4
  • 15
    • 0142136682 scopus 로고    scopus 로고
    • Statistical and substantive checking in growth mixture modeling
    • Muthén, B. (2003). Statistical and substantive checking in growth mixture modeling. Psychological Methods, 8, 369-377.
    • (2003) Psychological Methods , vol.8 , pp. 369-377
    • Muthén, B.1
  • 16
    • 8544268508 scopus 로고    scopus 로고
    • Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data
    • In D. Kaplan (Ed.), Thousand Oaks, CA: Sage
    • Muthén, B. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (Ed.), The Sage handbook of quantitative methodology for the social sciences (pp. 345-368). Thousand Oaks, CA: Sage.
    • (2004) The Sage Handbook of Quantitative Methodology for the Social Sciences , pp. 345-368
    • Muthén, B.1
  • 17
    • 36849091981 scopus 로고    scopus 로고
    • Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study
    • Nylund, K.L., Asparouhov, T., & Muthén, B.O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535-569.
    • (2007) Structural Equation Modeling , vol.14 , pp. 535-569
    • Nylund, K.L.1    Asparouhov, T.2    Muthén, B.O.3
  • 19
    • 73949160676 scopus 로고    scopus 로고
    • Longitudinal research: The theory, design, and analysis of change
    • Ployhart, R.E., & Vandenberg, R.J. (2010). Longitudinal research: The theory, design, and analysis of change. Journal of Management, 36, 94-120.
    • (2010) Journal of Management , vol.36 , pp. 94-120
    • Ployhart, R.E.1    Vandenberg, R.J.2
  • 20
    • 78650136904 scopus 로고    scopus 로고
    • Socialization in open source software projects: A growth mixture modeling approach
    • Qureshi, I., & Fang, Y. (2011). Socialization in open source software projects: A growth mixture modeling approach. Organizational Research Methods, 14, 208-238.
    • (2011) Organizational Research Methods , vol.14 , pp. 208-238
    • Qureshi, I.1    Fang, Y.2
  • 22
    • 78650135950 scopus 로고    scopus 로고
    • Multilevel mixed-measurement IRT analysis: An explication and application to self-reported emotions across the world
    • Tay, L., Diener, E., Drasgow, F., & Vermunt, J.K. (2011). Multilevel mixed-measurement IRT analysis: An explication and application to self-reported emotions across the world. Organizational Research Methods, 14, 177-206.
    • (2011) Organizational Research Methods , vol.14 , pp. 177-206
    • Tay, L.1    Diener, E.2    Drasgow, F.3    Vermunt, J.K.4
  • 23
    • 78650138347 scopus 로고    scopus 로고
    • Using mixed-measurement item response theory with covariates (MM-IRT-C) to ascertain observed and unobserved measurement equivalence
    • Tay, L., Newman, D.A., & Vermunt, J.K. (2011). Using mixed-measurement item response theory with covariates (MM-IRT-C) to ascertain observed and unobserved measurement equivalence. Organizational Research Methods, 14, 147-176.
    • (2011) Organizational Research Methods , vol.14 , pp. 147-176
    • Tay, L.1    Newman, D.A.2    Vermunt, J.K.3
  • 24
    • 0002329579 scopus 로고    scopus 로고
    • A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research
    • Vandenberg, R.J., & Lance, C.E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4-70.
    • (2000) Organizational Research Methods , vol.3 , pp. 4-70
    • Vandenberg, R.J.1    Lance, C.E.2
  • 25
    • 0012253128 scopus 로고    scopus 로고
    • Latent class cluster analysis
    • In J. A. Hagenaars & A. L. McCutcheon (Eds.), Cambridge, UK: Cambridge University Press
    • Vermunt, J.K., & Magidson, J. (2002). Latent class cluster analysis. In J. A. Hagenaars & A. L. McCutcheon (Eds.), Applied latent class analysis (pp. 89-106). Cambridge, UK: Cambridge University Press.
    • (2002) Applied Latent Class Analysis , pp. 89-106
    • Vermunt, J.K.1    Magidson, J.2
  • 26
    • 33947404066 scopus 로고    scopus 로고
    • Profiling retirees in the retirement transition and adjustment process: Examining the longitudinal change patterns of retirees' psychological well-being
    • Wang, M. (2007). Profiling retirees in the retirement transition and adjustment process: Examining the longitudinal change patterns of retirees' psychological well-being. Journal of Applied Psychology, 92, 455-474.
    • (2007) Journal of Applied Psychology , vol.92 , pp. 455-474
    • Wang, M.1
  • 27
    • 34548536809 scopus 로고    scopus 로고
    • Growth mixture modeling: Identifying and predicting unobserved subpopulations with longitudinal data
    • Wang, M., & Bodner, T.E. (2007). Growth mixture modeling: Identifying and predicting unobserved subpopulations with longitudinal data. Organizational Research Methods, 10, 635-656.
    • (2007) Organizational Research Methods , vol.10 , pp. 635-656
    • Wang, M.1    Bodner, T.E.2
  • 28
    • 78650115313 scopus 로고    scopus 로고
    • Mixture latent Markov modeling: Identifying and predicting unobserved heterogeneity in longitudinal qualitative status change
    • Wang, M., & Chan, D. (2010). Mixture latent Markov modeling: Identifying and predicting unobserved heterogeneity in longitudinal qualitative status change. Organizational Research Methods.
    • (2010) Organizational Research Methods
    • Wang, M.1    Chan, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.