-
1
-
-
0027174569
-
-
J. L. Doull, S. W. Ayer, A. K. Singh, P. Thibault, J. Antibiot. 1993, 46, 869.
-
(1993)
J. Antibiot.
, vol.46
, pp. 869
-
-
Doull, J.L.1
Ayer, S.W.2
Singh, A.K.3
Thibault, P.4
-
2
-
-
0028236918
-
-
J. L. Doull, A. K. Singh, M. Hoare, S. W. Ayer, J. Ind. Microbiol. 1994, 13, 120.
-
(1994)
J. Ind. Microbiol.
, vol.13
, pp. 120
-
-
Doull, J.L.1
Singh, A.K.2
Hoare, M.3
Ayer, S.W.4
-
3
-
-
77949833524
-
-
K. M. Cottreau, C. Spencer, J. R. Wentzell, C. L. Graham, C. N. Borissow, D. L. Jakeman, Org. Lett. 2010, 12, 1172.
-
(2010)
Org. Lett.
, vol.12
, pp. 1172
-
-
Cottreau, K.M.1
Spencer, C.2
Wentzell, J.R.3
Graham, C.L.4
Borissow, C.N.5
Jakeman, D.L.6
-
5
-
-
78650079660
-
-
It has been suggested that the L -digitoxose sugar is attached to the aglycon by the enzyme JadS both before and after the oxazolone ring formation, see
-
It has been suggested that the L -digitoxose sugar is attached to the aglycon by the enzyme JadS both before and after the oxazolone ring formation, see
-
-
-
-
6
-
-
33748138930
-
-
D. L. Jakeman, C. N. Borissow, C. L. Graham, S. C. Timmons, T. R. Reid, R. T. Syvitski, Chem. Commun. 2006, 3738
-
(2006)
Chem. Commun.
, pp. 3738
-
-
Jakeman, D.L.1
Borissow, C.N.2
Graham, C.L.3
Timmons, S.C.4
Reid, T.R.5
Syvitski, R.T.6
-
7
-
-
20444493372
-
-
U. Rix, C. Wang, Y. Chen, F. M. Lipata, L. L. R. Rix, L. M. Greenwell, L. C. Vining, K. Yang, J. Rohr, ChemBioChem 2005, 6, 838.
-
(2005)
ChemBioChem
, vol.6
, pp. 838
-
-
Rix, U.1
Wang, C.2
Chen, Y.3
Lipata, F.M.4
Rix, L.L.R.5
Greenwell, L.M.6
Vining, L.C.7
Yang, K.8
Rohr, J.9
-
9
-
-
74749089120
-
-
Y. Akagi, S. Yamada, N. Etomi, T. Kumamoto, W. Nakanishi, T. Ishikawa, Tetrahedron Lett. 2010, 51, 1338.
-
(2010)
Tetrahedron Lett.
, vol.51
, pp. 1338
-
-
Akagi, Y.1
Yamada, S.2
Etomi, N.3
Kumamoto, T.4
Nakanishi, W.5
Ishikawa, T.6
-
17
-
-
58149142847
-
-
For examples of diastereoselective aza-triene electrocyclic ring closures in synthesis, see.
-
For examples of diastereoselective aza-triene electrocyclic ring closures in synthesis, see:, G. Li, R. P. Hsung, B. W. Slafer, I. K. Sagamanova, Org. Lett. 2008, 10, 4991.
-
(2008)
Org. Lett.
, vol.10
, pp. 4991
-
-
Li, G.1
Hsung, R.P.2
Slafer, B.W.3
Sagamanova, I.K.4
-
19
-
-
78650122574
-
-
We found that most Brønsted/Lewis acid conditions for MOM/BOM groups removal lead to decomposition of starting material. We experienced similar problems with the hydrogenolysis of the BOM group. After some careful study we found a small window of opportunity with the short-term exposure (4-8 min) of both the MOM- and BOM-ether to concentrated HCl/acetonitrile (v/v 1:5).
-
We found that most Brønsted/Lewis acid conditions for MOM/BOM groups removal lead to decomposition of starting material. We experienced similar problems with the hydrogenolysis of the BOM group. After some careful study we found a small window of opportunity with the short-term exposure (4-8 min) of both the MOM- and BOM-ether to concentrated HCl/acetonitrile (v/v 1:5).
-
-
-
-
22
-
-
70349096804
-
-
M. Shan, Y. Xing, G. A. O'Doherty, J. Org. Chem. 2009, 74, 5961.
-
(2009)
J. Org. Chem.
, vol.74
, pp. 5961
-
-
Shan, M.1
Xing, Y.2
O'Doherty, G.A.3
-
23
-
-
0028271079
-
-
T. Müller, R. Schneider, R. R. Schmidt, Tetrahedron Lett. 1994, 35, 4763.
-
(1994)
Tetrahedron Lett.
, vol.35
, pp. 4763
-
-
Müller, T.1
Schneider, R.2
Schmidt, R.R.3
-
24
-
-
1642342224
-
-
R. S. Babu, M. Zhou, G. A. O'Doherty, J. Am. Chem. Soc. 2004, 126, 3428.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 3428
-
-
Babu, R.S.1
Zhou, M.2
O'Doherty, G.A.3
-
27
-
-
67650727208
-
-
Jakeman et al. reported similar color changes, see.
-
Jakeman et al. reported similar color changes, see:, D. L. Jakeman, S. N. Dupuis, C. L. Graham, Pure Appl. Chem. 2009, 81, 1041.
-
(2009)
Pure Appl. Chem.
, vol.81
, pp. 1041
-
-
Jakeman, D.L.1
Dupuis, S.N.2
Graham, C.L.3
-
31
-
-
84892620357
-
-
A. G. Myers, B. Zheng, M. Movassaghi, J. Org. Chem. 1997, 62, 7507
-
(1997)
J. Org. Chem.
, vol.62
, pp. 7507
-
-
Myers, A.G.1
Zheng, B.2
Movassaghi, M.3
-
33
-
-
78650105328
-
-
The route is 20 longest linear steps from quinic acid but only nine steps from known starting material 36.
-
The route is 20 longest linear steps from quinic acid but only nine steps from known starting material 36.
-
-
-
|