메뉴 건너뛰기




Volumn 43, Issue 1, 2011, Pages 461-470

Analyzing angle crashes at unsignalized intersections using machine learning techniques

Author keywords

Angle crash; Crash prediction; Data mining; Machine learning; MARS; Multivariate adaptive regression splines; Random forest; Unsignalized intersections

Indexed keywords

ANGLE CRASH; CRASH PREDICTION; MACHINE-LEARNING; MARS; MULTIVARIATE ADAPTIVE REGRESSION SPLINES; RANDOM FORESTS; UNSIGNALIZED INTERSECTIONS;

EID: 78650023661     PISSN: 00014575     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aap.2010.10.002     Document Type: Article
Times cited : (101)

References (47)
  • 1
    • 0034277116 scopus 로고    scopus 로고
    • Modeling traffic accident occurrence and involvement
    • M. Abdel-Aty, and E. Radwan Modeling traffic accident occurrence and involvement Accident Analysis and Prevention 32 5 2000 633 642
    • (2000) Accident Analysis and Prevention , vol.32 , Issue.5 , pp. 633-642
    • Abdel-Aty, M.1    Radwan, E.2
  • 2
    • 0036957692 scopus 로고    scopus 로고
    • Artificial Neural Networks and Logit Models for Traffic Safety Analysis of Toll Plazas
    • No. 1784. TRB, National Research Council, Washington, DC
    • Abdelwahab, H., Abdel-Aty, M., 2002. Artificial Neural Networks and Logit Models for Traffic Safety Analysis of Toll Plazas. Transportation Research Record: Journal of the Transportation Research Board, No. 1784. TRB, National Research Council, Washington, DC, pp. 115-125.
    • (2002) Transportation Research Record: Journal of the Transportation Research Board , pp. 115-125
    • Abdelwahab, H.1    Abdel-Aty, M.2
  • 5
    • 57849139673 scopus 로고    scopus 로고
    • A note on modeling vehicle accident frequencies with random-parameters count models
    • P. Anastasopoulos, and F. Mannering A note on modeling vehicle accident frequencies with random-parameters count models Accident Analysis and Prevention 41 2009 153 159
    • (2009) Accident Analysis and Prevention , vol.41 , pp. 153-159
    • Anastasopoulos, P.1    Mannering, F.2
  • 6
    • 0141595041 scopus 로고    scopus 로고
    • A new technique for using multivariate adaptive regression splines (MARS) in pavement roughness prediction
    • N. Attoh-Okine, S. Mensah, and M. Nawaiseh A new technique for using multivariate adaptive regression splines (MARS) in pavement roughness prediction Proceedings of the Institution of Civil Engineers 156 1 2003 51 55
    • (2003) Proceedings of the Institution of Civil Engineers , vol.156 , Issue.1 , pp. 51-55
    • Attoh-Okine, N.1    Mensah, S.2    Nawaiseh, M.3
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Machine Learning 45 1 2001 5 32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 78650014020 scopus 로고    scopus 로고
    • Crash Analysis Reporting System
    • Crash Analysis Reporting System. http://tlhost01.dot.state.fl.us/ bluezone/FDOT-Session/default.htm (accessed 20.01.08).
  • 12
    • 84943547307 scopus 로고    scopus 로고
    • Martial chronicles is MARS better than neural networks
    • L. Francis Martial chronicles is MARS better than neural networks Casualty Actuarial Society Forum Winter 2003 27 54
    • (2003) Casualty Actuarial Society Forum , Issue.WINTER , pp. 27-54
    • Francis, L.1
  • 13
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • J. Friedman Multivariate adaptive regression splines Ann Stat 19 1991 1 141
    • (1991) Ann Stat , vol.19 , pp. 1-141
    • Friedman, J.1
  • 14
    • 78649990246 scopus 로고    scopus 로고
    • Google Earth
    • Google Earth. http://earth.google.com/ (accessed 20.01.08).
  • 15
    • 78651303001 scopus 로고    scopus 로고
    • Multiple applications of the multivariate adaptive regression splines technique in predicting rear-end crashes at unsignalized intersections
    • in press
    • Haleem, K., Abdel-Aty, M., Santos, J., 2010. Multiple applications of the multivariate adaptive regression splines technique in predicting rear-end crashes at unsignalized intersections. Journal of the Transportation Research Board, in press.
    • (2010) Journal of the Transportation Research Board
    • Haleem, K.1    Abdel-Aty, M.2    Santos, J.3
  • 16
    • 57849165378 scopus 로고    scopus 로고
    • Exploring precrash maneuvers using classification trees and random forests
    • R. Harb, X. Yan, E. Radwan, and X. Su Exploring precrash maneuvers using classification trees and random forests Accident Analysis and Prevention 41 1 2009 98 107
    • (2009) Accident Analysis and Prevention , vol.41 , Issue.1 , pp. 98-107
    • Harb, R.1    Yan, X.2    Radwan, E.3    Su, X.4
  • 19
    • 76049113066 scopus 로고    scopus 로고
    • Investigating differences in the performance of safety performance functions estimated for total crash count and for crash count by crash type
    • Washington, DC
    • Jonsson, T., Lyon, C., Ivan, J., Washington, S., Schalkwyk, I., Lord, D., 2009. Investigating differences in the performance of safety performance functions estimated for total crash count and for crash count by crash type. Paper Presented at the Transportation Research Board 88th annual meeting, Washington, DC.
    • (2009) Transportation Research Board 88th Annual Meeting
    • Jonsson, T.1    Lyon, C.2    Ivan, J.3    Washington, S.4    Schalkwyk, I.5    Lord, D.6
  • 20
    • 0348123392 scopus 로고    scopus 로고
    • MARS modeling for ordinal categorical response data: A case study
    • J. Kim MARS modeling for ordinal categorical response data: a case study The Korean Communications in Statistics 7 2000 711 720
    • (2000) The Korean Communications in Statistics , vol.7 , pp. 711-720
    • Kim, J.1
  • 21
    • 57949094277 scopus 로고    scopus 로고
    • Building blocks for automated elucidation of metabolites: Machine learning methods for NMR prediction
    • S. Kuhn, B. Egert, S. Neumann, and C. Steinbeck Building blocks for automated elucidation of metabolites: Machine learning methods for NMR prediction BMC Bioinformatics 9 400 2008
    • (2008) BMC Bioinformatics , vol.9 , Issue.400
    • Kuhn, S.1    Egert, B.2    Neumann, S.3    Steinbeck, C.4
  • 24
    • 46149126623 scopus 로고    scopus 로고
    • Predicting motor vehicle crashes using Support Vector Machine models
    • X. Li, D. Lord, Y. Zhang, and Y. Xie Predicting motor vehicle crashes using Support Vector Machine models Accident Analysis and Prevention 40 4 2008 1611 1618
    • (2008) Accident Analysis and Prevention , vol.40 , Issue.4 , pp. 1611-1618
    • Li, X.1    Lord, D.2    Zhang, Y.3    Xie, Y.4
  • 27
    • 76749158473 scopus 로고    scopus 로고
    • Examining the application of aggregated and disaggregated Poisson-gamma models subjected to low sample mean bias
    • No. 1290, Washington, DC
    • Lord, D., Mahlawat, M., 2009. Examining the application of aggregated and disaggregated Poisson-gamma models subjected to low sample mean bias. Paper Presented at the Transportation Research Board 88th Annual Meeting, No. 1290, Washington, DC.
    • (2009) Transportation Research Board 88th Annual Meeting
    • Lord, D.1    Mahlawat, M.2
  • 28
    • 0028486329 scopus 로고
    • The relationship between truck accidents and geometric design of road section: Poisson versus Negative Binomial regression
    • S. Miaou The relationship between truck accidents and geometric design of road section: Poisson versus Negative Binomial regression Accident Analysis and Prevention 26 4 1994 471 482
    • (1994) Accident Analysis and Prevention , vol.26 , Issue.4 , pp. 471-482
    • Miaou, S.1
  • 30
    • 0032588286 scopus 로고    scopus 로고
    • An analysis of urban collisions using an artificial intelligence model
    • L. Mussone, A. Ferrari, and M. Oneta An analysis of urban collisions using an artificial intelligence model Accident Analysis and Prevention 31 6 1999 705 718
    • (1999) Accident Analysis and Prevention , vol.31 , Issue.6 , pp. 705-718
    • Mussone, L.1    Ferrari, A.2    Oneta, M.3
  • 36
    • 0002333607 scopus 로고    scopus 로고
    • Negative binomial analysis of intersection-accident frequency
    • M. Poch, and F. Mannering Negative binomial analysis of intersection-accident frequency Journal of Transportation Engineering 122 2 1996 105 113
    • (1996) Journal of Transportation Engineering , vol.122 , Issue.2 , pp. 105-113
    • Poch, M.1    Mannering, F.2
  • 37
    • 7044254714 scopus 로고    scopus 로고
    • Multivariate adaptive regression splines (MARS) in chromatographic quantitative structure-retention relationship studies
    • R. Put, Q. Xu, D. Massart, and Y. Heyden Multivariate adaptive regression splines (MARS) in chromatographic quantitative structure-retention relationship studies Journal of Chromatography A 1055 2004 11 19
    • (2004) Journal of Chromatography A , vol.1055 , pp. 11-19
    • Put, R.1    Xu, Q.2    Massart, D.3    Heyden, Y.4
  • 38
    • 31044440396 scopus 로고    scopus 로고
    • A Bayesian neural network approach to estimating the energy equivalent speed
    • C. Riviere, P. Lauret, J. Ramsamy, and Y. Page A Bayesian neural network approach to estimating the energy equivalent speed Accident Analysis and Prevention 38 2 2006 248 259
    • (2006) Accident Analysis and Prevention , vol.38 , Issue.2 , pp. 248-259
    • Riviere, C.1    Lauret, P.2    Ramsamy, J.3    Page, Y.4
  • 39
    • 78649985997 scopus 로고    scopus 로고
    • Roadway Characteristic Inventory
    • Roadway Characteristic Inventory. http://webapp01.dot.state.fl.us/Login/ default.asp (accessed 10.02.08).
  • 41
    • 33846706204 scopus 로고    scopus 로고
    • Traffic accidents modeling: Some statistical issues
    • Z. Sawalha, and T. Sayed Traffic accidents modeling: some statistical issues Canadian Journal of Civil Engineering 33 9 2006 1115 1124
    • (2006) Canadian Journal of Civil Engineering , vol.33 , Issue.9 , pp. 1115-1124
    • Sawalha, Z.1    Sayed, T.2
  • 43
    • 78649998402 scopus 로고    scopus 로고
    • The New Web-based RCI Application
    • The New Web-based RCI Application. http://webservices.camsys.com/trbcomm/ docs/presfla2005.htm (accessed 10.07.08).
  • 44
    • 78650035773 scopus 로고    scopus 로고
    • Video Log Viewer Application
    • Video Log Viewer Application. http://webapp01.dot.state.fl.us/videolog/ (accessed 10.02.08).
  • 46
    • 34548502433 scopus 로고    scopus 로고
    • Predicting motor vehicle collisions using Bayesian neural network models: An empirical analysis
    • Y. Xie, D. Lord, and Y. Zhang Predicting motor vehicle collisions using Bayesian neural network models: an empirical analysis Accident Analysis and Prevention 39 5 2007 922 933
    • (2007) Accident Analysis and Prevention , vol.39 , Issue.5 , pp. 922-933
    • Xie, Y.1    Lord, D.2    Zhang, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.