메뉴 건너뛰기




Volumn , Issue , 2010, Pages 203-214

Dimension reduction and visualization of large high-dimensional data via interpolation

Author keywords

GTM; Interpolation; MDS

Indexed keywords

COMPUTATIONAL RESOURCES; DATA ANALYSIS; DATA POINTS; DIMENSION REDUCTION; DIMENSION REDUCTION ALGORITHM; GENE SEQUENCES; GENERATIVE TOPOGRAPHIC MAPPING; GTM; HIGH DIMENSIONAL DATA; HIGH EFFICIENCY; HIGH-DIMENSIONAL; INTERPOLATION ALGORITHMS; INTERPOLATION METHOD; LARGE HIGH-DIMENSIONAL DATA; MDS; MEMORY REQUIREMENTS; MULTI-DIMENSIONAL SCALING; ORIGINAL ALGORITHMS; PARALLEL MECHANISMS; PARALLEL PERFORMANCE; PERFORMANCE DIMENSIONS; PHYSICAL MEMORY; SAMPLE DATA; SCIENTIFIC DATA; STRESS CRITERION; THREE DIMENSIONAL VISUALIZATION;

EID: 78650015538     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1851476.1851501     Document Type: Conference Paper
Times cited : (46)

References (24)
  • 1
    • 62249143532 scopus 로고    scopus 로고
    • NP-hardness of Euclidean sum-of-squares clustering
    • D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Euclidean sum-of-squares clustering. Machine Learning, 75(2):245-248, 2009.
    • (2009) Machine Learning , vol.75 , Issue.2 , pp. 245-248
    • Aloise, D.1    Deshpande, A.2    Hansen, P.3    Popat, P.4
  • 4
    • 0347963789 scopus 로고    scopus 로고
    • GTM: The generative topographic mapping
    • C. Bishop, M. Svensén, and C. Williams. GTM: The generative topographic mapping. Neural computation, 10(1):215-234, 1998.
    • (1998) Neural Computation , vol.10 , Issue.1 , pp. 215-234
    • Bishop, C.1    Svensén, M.2    Williams, C.3
  • 9
    • 0039305819 scopus 로고
    • Applications of convex analysis to multidimensional scaling
    • J. de Leeuw. Applications of convex analysis to multidimensional scaling. Recent Developments in Statistics, pages 133-145, 1977.
    • (1977) Recent Developments in Statistics , pp. 133-145
    • De Leeuw, J.1
  • 10
    • 0003165345 scopus 로고
    • Convergence of the majorization method for multidimensional scaling
    • J. de Leeuw. Convergence of the majorization method for multidimensional scaling. Journal of Classification, 5(2):163-180, 1988.
    • (1988) Journal of Classification , vol.5 , Issue.2 , pp. 163-180
    • De Leeuw, J.1
  • 13
    • 0023288009 scopus 로고
    • Matrix algorithms on a hypercube I: Matrix multiplication
    • G. Fox, S. Otto, and A. Hey. Matrix algorithms on a hypercube I: Matrix multiplication. Parallel computing, 4(1):17-31, 1987.
    • (1987) Parallel Computing , vol.4 , Issue.1 , pp. 17-31
    • Fox, G.1    Otto, S.2    Hey, A.3
  • 16
    • 0345404396 scopus 로고    scopus 로고
    • The self-organizing map
    • T. Kohonen. The self-organizing map. Neurocomputing, 21(1-3):1-6, 1998.
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 1-6
    • Kohonen, T.1
  • 17
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
    • J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1):1-27, 1964.
    • (1964) Psychometrika , vol.29 , Issue.1 , pp. 1-27
    • Kruskal, J.B.1
  • 19
    • 34250297158 scopus 로고
    • Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features
    • Y. Takane, F. W. Young, and J. de Leeuw. Nonmetric individual differences multidimensional scaling: an alternating least squares method with optimal scaling features. Psychometrika, 42(1):7-67, 1977.
    • (1977) Psychometrika , vol.42 , Issue.1 , pp. 7-67
    • Takane, Y.1    Young, F.W.2    De Leeuw, J.3
  • 20
    • 84950351930 scopus 로고
    • Multidimensional scaling: I. theory and method
    • W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika, 17(4):401-419, 1952.
    • (1952) Psychometrika , vol.17 , Issue.4 , pp. 401-419
    • Torgerson, W.S.1
  • 21
    • 44349104257 scopus 로고    scopus 로고
    • The out-of-sample problem for classical multidimensional scaling
    • M. W. Trosset and C. E. Priebe. The out-of-sample problem for classical multidimensional scaling. Computational Statistics and Data Analysis, 52(10):4635-4642, 2008.
    • (2008) Computational Statistics and Data Analysis , vol.52 , Issue.10 , pp. 4635-4642
    • Trosset, M.W.1    Priebe, C.E.2
  • 22
    • 0031123769 scopus 로고    scopus 로고
    • SUMMA: Scalable universal matrix multiplication algorithm
    • R. Van De Geijn and J. Watts. SUMMA: Scalable universal matrix multiplication algorithm. Concurrency Practice and Experience, 9(4):255-274, 1997.
    • (1997) Concurrency Practice and Experience , vol.9 , Issue.4 , pp. 255-274
    • De G.R.Van1    Watts, J.2
  • 23
    • 60549085200 scopus 로고    scopus 로고
    • Further relaxations of the semidefinite programming approach to sensor network localization
    • Z. Wang, S. Zheng, Y. Ye, and S. Boyd. Further relaxations of the semidefinite programming approach to sensor network localization. SIAM Journal on Optimization, 19(2):655-673, 2008.
    • (2008) SIAM Journal on Optimization , vol.19 , Issue.2 , pp. 655-673
    • Wang, Z.1    Zheng, S.2    Ye, Y.3    Boyd, S.4
  • 24
    • 67349098382 scopus 로고    scopus 로고
    • Embedding new data points for manifold learning via coordinate propagation
    • S. Xiang, F. Nie, Y. Song, C. Zhang, and C. Zhang. Embedding new data points for manifold learning via coordinate propagation. Knowledge and Information Systems, 19(2):159-184, 2009.
    • (2009) Knowledge and Information Systems , vol.19 , Issue.2 , pp. 159-184
    • Xiang, S.1    Nie, F.2    Song, Y.3    Zhang, C.4    Zhang, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.