메뉴 건너뛰기




Volumn , Issue , 2010, Pages 95-102

Online evolutionary collaborative filtering

Author keywords

Collaborative filtering; Latent class model; Ranking

Indexed keywords

COLLABORATIVE FILTERING; COLLABORATIVE FILTERING ALGORITHMS; HISTORICAL DATA; INCREMENTAL ALGORITHM; LATENT CLASS MODEL; RANKING; REAL-WORLD APPLICATION; REAL-WORLD DATASETS; RECOMMENDATION ALGORITHMS; TEMPORAL INFORMATION; USER INTERESTS; USER'S INTEREST;

EID: 78649960868     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1864708.1864729     Document Type: Conference Paper
Times cited : (112)

References (21)
  • 1
    • 64149107285 scopus 로고    scopus 로고
    • A new approach to collaborative filtering: Operator estimation with spectral regularization
    • J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert. A new approach to collaborative filtering: Operator estimation with spectral regularization. Journal of Machine Learning Research, 10:803-826, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 803-826
    • Abernethy, J.1    Bach, F.2    Evgeniou, T.3    Vert, J.-P.4
  • 3
    • 36849005505 scopus 로고    scopus 로고
    • Evolutionary spectral clustering by incorporating temporal smoothness
    • Y. Chi, X. Song, D. Zhou, K. Hino, and B. Tseng. Evolutionary spectral clustering by incorporating temporal smoothness. In KDD, pages 153-162, 2007.
    • (2007) KDD , pp. 153-162
    • Chi, Y.1    Song, X.2    Zhou, D.3    Hino, K.4    Tseng, B.5
  • 5
    • 33745798477 scopus 로고    scopus 로고
    • Time weight collaborative filtering
    • New York, NY, USA, ACM
    • Y. Ding and X. Li. Time weight collaborative filtering. In Proc. of CIKM '05, pages 485-492, New York, NY, USA, 2005. ACM.
    • (2005) Proc. of CIKM '05 , pp. 485-492
    • Ding, Y.1    Li, X.2
  • 6
    • 12244286335 scopus 로고    scopus 로고
    • Systematic data selection to mine concept-drifting data streams
    • W. Fan. Systematic data selection to mine concept-drifting data streams. In KDD, pages 128-137, 2004.
    • (2004) KDD , pp. 128-137
    • Fan, W.1
  • 7
    • 70449102582 scopus 로고    scopus 로고
    • A general framework for mining concept-drifting data streams with skewed distributions
    • J. Gao, W. Fan, J. Han, and P. S. Yu. A general framework for mining concept-drifting data streams with skewed distributions. In SDM, 2007.
    • (2007) SDM
    • Gao, J.1    Fan, W.2    Han, J.3    Yu, P.S.4
  • 8
    • 0002549585 scopus 로고    scopus 로고
    • Eigentaste: A constant time collaborative filtering algorithm
    • K. Y. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 4(2):133-151, 2001.
    • (2001) Information Retrieval , vol.4 , Issue.2 , pp. 133-151
    • Goldberg, K.Y.1    Roeder, T.2    Gupta, D.3    Perkins, C.4
  • 9
    • 3042829247 scopus 로고    scopus 로고
    • An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms
    • J. Herlocker, J. A. Konstan, and J. Riedl. An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Information retrieval, 5(4):287-310, 2002.
    • (2002) Information Retrieval , vol.5 , Issue.4 , pp. 287-310
    • Herlocker, J.1    Konstan, J.A.2    Riedl, J.3
  • 10
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst., 22(1):89-115, 2004.
    • (2004) ACM Trans. Inf. Syst. , vol.22 , Issue.1 , pp. 89-115
    • Hofmann, T.1
  • 11
    • 67049164166 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Washington, DC, USA, IEEE Computer Society
    • Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In Proc. of ICDM'08, pages 263-272, Washington, DC, USA, 2008. IEEE Computer Society.
    • (2008) Proc. of ICDM'08 , pp. 263-272
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 12
    • 15544377080 scopus 로고    scopus 로고
    • Collaborative filtering with decoupled models for preferences and ratings
    • R. Jin, L. Si, C. Zhai, and J. Callan. Collaborative filtering with decoupled models for preferences and ratings. In Proceedings of CIKM 2003, pages 309-106, 2003.
    • (2003) Proceedings of CIKM 2003 , pp. 309-106
    • Jin, R.1    Si, L.2    Zhai, C.3    Callan, J.4
  • 13
    • 70350647708 scopus 로고    scopus 로고
    • Collaborative filtering with temporal dynamics
    • Y. Koren. Collaborative filtering with temporal dynamics. In Proc. of SIGKDD 2009, 2009.
    • (2009) Proc. of SIGKDD 2009
    • Koren, Y.1
  • 14
    • 72449185214 scopus 로고    scopus 로고
    • Temporal collaborative filtering with adaptive neighbourhoods
    • N. Lathia, S. Hailes, and L. Capra. Temporal collaborative filtering with adaptive neighbourhoods. In Proc. of SIGIR 2009, 2009.
    • (2009) Proc. of SIGIR 2009
    • Lathia, N.1    Hailes, S.2    Capra, L.3
  • 15
    • 33749575020 scopus 로고    scopus 로고
    • Tensor-cur decompositions for tensor-based data
    • New York, NY, USA, ACM
    • M. W. Mahoney, M. Maggioni, and P. Drineas. Tensor-cur decompositions for tensor-based data. In Proc. of KDD '06, pages 327-336, New York, NY, USA, 2006. ACM.
    • (2006) Proc. of KDD '06 , pp. 327-336
    • Mahoney, M.W.1    Maggioni, M.2    Drineas, P.3
  • 17
    • 0001391984 scopus 로고    scopus 로고
    • Collaborative filtering by personality diagnosis: A hybrid memory and model-based approach
    • D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles. Collaborative filtering by personality diagnosis: A hybrid memory and model-based approach. In Proc. of UAI, pages 473-480, 2000.
    • (2000) Proc. of UAI , pp. 473-480
    • Pennock, D.M.1    Horvitz, E.2    Lawrence, S.3    Giles, C.L.4
  • 18
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • New York, NY, USA, ACM
    • J. D. M. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In Proc. of ICML '05, pages 713-719, New York, NY, USA, 2005. ACM.
    • (2005) Proc. of ICML '05 , pp. 713-719
    • Rennie, J.D.M.1    Srebro, N.2
  • 19
    • 85052617391 scopus 로고    scopus 로고
    • Item-based collaborative filtering recommendation algorithms
    • B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285-295, 2001.
    • (2001) WWW , pp. 285-295
    • Sarwar, B.M.1    Karypis, G.2    Konstan, J.A.3    Riedl, J.4
  • 20
    • 1942516801 scopus 로고    scopus 로고
    • Weighted low-rank approximations
    • N. Srebro and T. Jaakkola. Weighted low-rank approximations. In ICML, pages 720-727, 2003.
    • (2003) ICML , pp. 720-727
    • Srebro, N.1    Jaakkola, T.2
  • 21
    • 33749583360 scopus 로고    scopus 로고
    • Beyond streams and graphs: Dynamic tensor analysis
    • J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs: dynamic tensor analysis. In KDD, pages 374-383, 2006.
    • (2006) KDD , pp. 374-383
    • Sun, J.1    Tao, D.2    Faloutsos, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.