메뉴 건너뛰기




Volumn 6320 LNAI, Issue PART 2, 2010, Pages 124-133

Research of long-term runoff forecast based on support vector machine method

Author keywords

long term runoff forecasting; parameter identification; PSO; SVM

Indexed keywords

ARMA MODEL; BP NEURAL NETWORK MODEL; FITNESS FUNCTIONS; GENERALIZATION ABILITY; LEAVE-ONE-OUT METHOD; PARAMETER IDENTIFICATION; PARTICLE SWARM; PSO; RUNOFF FORECAST; RUNOFF FORECASTING; SEASONAL ARIMA MODELS; SUPPORT VECTOR MACHINE METHOD; SVM; SVM LEARNING METHODS; SVM MODEL; TESTING SAMPLES; YANGTZE RIVER;

EID: 78649911148     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-16527-6_17     Document Type: Conference Paper
Times cited : (1)

References (12)
  • 1
    • 4644299731 scopus 로고    scopus 로고
    • Forecasting flows in Apalachicola River using neural networks
    • DOI 10.1002/hyp.1492
    • Huang, W., Xu, B., Chan-Hilton, A.: Forecasting flows in Apalachicola River using neural networks. Hydrological Processes 18(13), 2545-2564 (2004) (Pubitemid 39267227)
    • (2004) Hydrological Processes , vol.18 , Issue.13 , pp. 2545-2564
    • Huang, W.1    Xu, B.2    Chan-Hilton, A.3
  • 4
    • 60649084386 scopus 로고    scopus 로고
    • Modeling of Biomass Gasification Process Based on Least Squares SVM
    • Li, D.-z., Wang, Z.: Modeling of Biomass Gasification Process Based on Least Squares SVM. Journal of System Simulation 21(3), 629-633 (2009)
    • (2009) Journal of System Simulation , vol.21 , Issue.3 , pp. 629-633
    • Li, D.-Z.1    Wang, Z.2
  • 5
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola, A.J., Schoelkopf, B.: A tutorial on support vector regression. Statistics and Computing (14), 199-222 (2004)
    • (2004) Statistics and Computing , Issue.14 , pp. 199-222
    • Smola, A.J.1    Schoelkopf, B.2
  • 7
    • 33747484496 scopus 로고    scopus 로고
    • Application of support vector machine method to long-term runoff forecast
    • Lin, J.-y., Cheng, C.-t.: Application of support vector machine method to long-term runoff forecast. Journal of Hydraulic Engineering 37(6), 681-686 (2006)
    • (2006) Journal of Hydraulic Engineering , vol.37 , Issue.6 , pp. 681-686
    • Lin, J.-Y.1    Cheng, C.-T.2
  • 8
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • Keerthi, S.S., Lin, C.J.: Asymptotic behaviors of support vector machines with Gaussian kernel. Neural computation (15), 1667-1689 (2003)
    • (2003) Neural Computation , Issue.15 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.J.2
  • 10
    • 33750904730 scopus 로고    scopus 로고
    • Comparison in Generalization Performance of Support Vector Machine Algorithms
    • Dong, C.-x., Yang, S.-q., Rao, X.: Comparison in Generalization Performance of Support Vector Machine Algorithms. Journal of Circuits and Systems 9(4), 86-91 (2004)
    • (2004) Journal of Circuits and Systems , vol.9 , Issue.4 , pp. 86-91
    • Dong, C.-X.1    Yang, S.-Q.2    Rao, X.3
  • 11
    • 29144499905 scopus 로고    scopus 로고
    • Working Set Selection Using Second Order Information for Training Support Vector Machines
    • Fan, R.-E., Chen, P.-H., Lin, C.-J.: Working Set Selection Using Second Order Information for Training Support Vector Machines. Journal of Machine Learning Research (6), 1889-1918 (2005)
    • (2005) Journal of Machine Learning Research , Issue.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.