메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Programmer-based fault prediction

Author keywords

Bug ratio; Empirical study; Fault prone; Prediction; Regression model; Software faults

Indexed keywords

BUG RATIO; EMPIRICAL STUDIES; FAULT-PRONE; PREDICTION; REGRESSION MODEL; SOFTWARE FAULT;

EID: 78649780852     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1868328.1868357     Document Type: Conference Paper
Times cited : (69)

References (29)
  • 1
    • 34247367238 scopus 로고    scopus 로고
    • Predicting fault-prone components in a Java legacy system
    • Rio de Janeiro
    • E. Arisholm and L.C. Briand. Predicting Fault-prone Components in a Java Legacy System. Proc. ACM/IEEE ISESE, Rio de Janeiro, 2006.
    • (2006) Proc. ACM/IEEE ISESE
    • Arisholm, E.1    Briand, L.C.2
  • 2
    • 0001622174 scopus 로고    scopus 로고
    • A validation of object-oriented design metrics as quality indicators
    • V.R. Basili, L.C. Briand, and W.L. Melo. A Validation of Object-oriented Design Metrics as Quality Indicators. IEEE Trans. Software Eng., 22(10), pp.751-761, 1996.
    • (1996) IEEE Trans. Software Eng. , vol.22 , Issue.10 , pp. 751-761
    • Basili, V.R.1    Briand, L.C.2    Melo, W.L.3
  • 3
    • 0031597194 scopus 로고    scopus 로고
    • Validation of the coupling dependency metric as a predictor of run-time failures and maintenance measures
    • A. Binkley, and S. Schach. Validation of the Coupling Dependency Metric as a Predictor of Run-time Failures and Maintenance Measures. Proc. 20th Int. Conf. Software Engineering, pp. 452-455, 1998.
    • (1998) Proc. 20th Int. Conf. Software Engineering , pp. 452-455
    • Binkley, A.1    Schach, S.2
  • 9
    • 0036891333 scopus 로고    scopus 로고
    • Using regression trees to classify fault-prone software modules
    • Dec
    • T.M. Khoshgoftaar, E.B. Allen, J. Deng. Using Regression Trees to Classify Fault-Prone Software Modules. IEEE Trans. on Reliability, Vol 51, No. 4, Dec 2002, pp. 455-462.
    • (2002) IEEE Trans. on Reliability , vol.51 , Issue.4 , pp. 455-462
    • Khoshgoftaar, T.M.1    Allen, E.B.2    Deng, J.3
  • 10
    • 49349089233 scopus 로고    scopus 로고
    • Benchmarking classification models for software defect prediction: A proposed framework and novel findings
    • S. Lessmann, B. Baesens, C. Mues and S. Pietsch. Benchmarking Classification Models for Software Defect Prediction: A Proposed Framework and Novel Findings. IEEE Trans. Software Eng., 34(4), pp.485-496, 2008.
    • (2008) IEEE Trans. Software Eng. , vol.34 , Issue.4 , pp. 485-496
    • Lessmann, S.1    Baesens, B.2    Mues, C.3    Pietsch, S.4
  • 12
    • 42549092547 scopus 로고    scopus 로고
    • Using the conceptual cohesion of classes for fault prediction in object-oriented systems
    • A. Marcus, D. Poshyvanyk, and R. Ferenc. Using the Conceptual Cohesion of Classes for Fault Prediction in Object-oriented Systems. IEEE Trans. Software Eng., 34(2), pp. 287-300, 2007.
    • (2007) IEEE Trans. Software Eng. , vol.34 , Issue.2 , pp. 287-300
    • Marcus, A.1    Poshyvanyk, D.2    Ferenc, R.3
  • 15
    • 70450264229 scopus 로고    scopus 로고
    • Predicting failures with developer networks and social network analysis
    • A. Meneely, L. Williams, W. Snipes, and J.Osborne. Predicting Failures with Developer Networks and Social Network Analysis. Proc. SIGSOFT FSE 2008, pp. 13-23, 2008.
    • (2008) Proc. SIGSOFT FSE 2008 , pp. 13-23
    • Meneely, A.1    Williams, L.2    Snipes, W.3    Osborne, J.4
  • 16
    • 33845782503 scopus 로고    scopus 로고
    • Data mining static code attributes to learn defect predictors
    • T. Menzies, J. Greenwald and A. Frank. Data Mining Static Code Attributes to Learn Defect Predictors. IEEE Trans. Software Eng., 33(1), pp. 2-13, 2007.
    • (2007) IEEE Trans. Software Eng. , vol.33 , Issue.1 , pp. 2-13
    • Menzies, T.1    Greenwald, J.2    Frank, A.3
  • 18
    • 0034172234 scopus 로고    scopus 로고
    • Predicting risk of software changes
    • April-June
    • A. Mockus and D.M. Weiss. Predicting Risk of Software Changes. Bell Labs Technical Journal, April-June 2000, pp. 169-180.
    • (2000) Bell Labs Technical Journal , pp. 169-180
    • Mockus, A.1    Weiss, D.M.2
  • 21
    • 33646161505 scopus 로고    scopus 로고
    • Predicting fault-prone software modules in telephone switches
    • December
    • N. Ohlsson and H. Alberg. Predicting Fault-Prone Software Modules in Telephone Switches. IEEE Trans. on Software Engineering, Vol 22, No 12, December 1996, pp. 886-894.
    • (1996) IEEE Trans. on Software Engineering , vol.22 , Issue.12 , pp. 886-894
    • Ohlsson, N.1    Alberg, H.2
  • 22
    • 22944473604 scopus 로고    scopus 로고
    • Predicting the location and number of faults in large software systems
    • April
    • T.J. Ostrand, E.J. Weyuker, and R.M. Bell. Predicting the Location and Number of Faults in Large Software Systems. IEEE Trans. on Software Engineering, Vol 31, No 4, April 2005.
    • (2005) IEEE Trans. on Software Engineering , vol.31 , Issue.4
    • Ostrand, T.J.1    Weyuker, E.J.2    Bell, R.M.3
  • 27
    • 52549112910 scopus 로고    scopus 로고
    • Do too many cooks spoil the broth? using the number of developers to enhance defect prediction models
    • October
    • E.J. Weyuker, T.J. Ostrand, and R.M. Bell. Do Too Many Cooks Spoil the Broth? Using the Number of Developers to Enhance Defect Prediction Models. Empirical Software Eng., Vol 13, No. 5, October 2008.
    • (2008) Empirical Software Eng. , vol.13 , Issue.5
    • Weyuker, E.J.1    Ostrand, T.J.2    Bell, R.M.3
  • 28
    • 77954760375 scopus 로고    scopus 로고
    • Comparing the effectiveness of several modeling methods for fault prediction
    • June
    • E.J. Weyuker, T.J. Ostrand, and R.M. Bell. Comparing the Effectiveness of Several Modeling Methods for Fault Prediction. Empirical Software Eng. Vol 15, No. 3, June 2010.
    • (2010) Empirical Software Eng. , vol.15 , Issue.3
    • Weyuker, E.J.1    Ostrand, T.J.2    Bell, R.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.