메뉴 건너뛰기




Volumn 24, Issue 1, 2011, Pages 130-141

Looking inside self-organizing map ensembles with resampling and negative correlation learning

Author keywords

Bagging; Ensemble learning; Negative correlation learning; Random subspace method; Regression; Self organizing maps

Indexed keywords

BAGGING; ENSEMBLE LEARNING; NEGATIVE CORRELATION LEARNING; RANDOM SUBSPACE METHOD; REGRESSION;

EID: 78649679693     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2010.08.004     Document Type: Article
Times cited : (8)

References (38)
  • 1
    • 78649644446 scopus 로고    scopus 로고
    • UCI machine learning repository.
    • Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository.
    • (2007)
    • Asuncion, A.1    Newman, D.J.2
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests. In Machine learning
    • Breiman, L. (2001). Random forests. In Machine learning (pp. 5-32).
    • (2001) , pp. 5-32
    • Breiman, L.1
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors. In Machine learning
    • Breiman, L. (1996). Bagging predictors. In Machine learning (pp. 123-140).
    • (1996) , pp. 123-140
    • Breiman, L.1
  • 4
    • 78649650244 scopus 로고    scopus 로고
    • Diversity in neural network ensembles. Ph.D. thesis. University of Birmingham.
    • Brown, G. (2004). Diversity in neural network ensembles. Ph.D. thesis. University of Birmingham.
    • (2004)
    • Brown, G.1
  • 6
    • 25444460435 scopus 로고    scopus 로고
    • Between two extremes: examining decompositions of the ensemble objective function
    • International workshop on multiple classifier systems
    • Brown G., Wyatt J., Sun P. Between two extremes: examining decompositions of the ensemble objective function. LNCS 2005, Vol. 3541.
    • (2005) LNCS , vol.3541
    • Brown, G.1    Wyatt, J.2    Sun, P.3
  • 8
  • 9
    • 58449125360 scopus 로고    scopus 로고
    • A data mining approach to predict forest fires using meteorological data. In J. Neves, M. F. Santos & J. Machado (Eds.) New trends in artificial intelligence, proceedings of the 13th EPIA 2007-Portuguese conference on artificial intelligence
    • Cortez, P., & Morais, A. (2007). A data mining approach to predict forest fires using meteorological data. In J. Neves, M. F. Santos & J. Machado (Eds.) New trends in artificial intelligence, proceedings of the 13th EPIA 2007-Portuguese conference on artificial intelligence (pp. 512-523.
    • (2007) , pp. 512-523
    • Cortez, P.1    Morais, A.2
  • 10
    • 0003477718 scopus 로고    scopus 로고
    • The handbook of brain theory and neural networks
    • The MIT Press, Cambridge, MA, (Chapter), M.A. Arbib (Ed.)
    • Dietterich T.G. The handbook of brain theory and neural networks. Ensemble learning 2002, 405-408. The MIT Press, Cambridge, MA, (Chapter). second ed. M.A. Arbib (Ed.).
    • (2002) Ensemble learning , pp. 405-408
    • Dietterich, T.G.1
  • 11
    • 78649667386 scopus 로고    scopus 로고
    • E1071: misc functions of the department of statistics (e1071). TU Wien. R package version 1.5-19.
    • Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., & Weingessel, A. (2009). E1071: misc functions of the department of statistics (e1071). TU Wien. R package version 1.5-19.
    • (2009)
    • Dimitriadou, E.1    Hornik, K.2    Leisch, F.3    Meyer, D.4    Weingessel, A.5
  • 12
    • 0033703441 scopus 로고    scopus 로고
    • The growing hierarchical self-organizing map
    • IEEE Computer Society
    • Dittenbach M., Merkl D., Rauber A. The growing hierarchical self-organizing map. IJCNN (6) 2000, 15-19. IEEE Computer Society.
    • (2000) IJCNN (6) , pp. 15-19
    • Dittenbach, M.1    Merkl, D.2    Rauber, A.3
  • 14
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman J.H. Multivariate adaptive regression splines. The Annals of Statistics 1991, 19:1-67.
    • (1991) The Annals of Statistics , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 15
    • 0001948145 scopus 로고
    • Fast learning with incremental RBF networks
    • Fritzke B. Fast learning with incremental RBF networks. Neural Processing Letters 1994, 2-5.
    • (1994) Neural Processing Letters , pp. 2-5
    • Fritzke, B.1
  • 20
    • 35248878650 scopus 로고    scopus 로고
    • Effective pruning method for a multiple classifier system based on self-generating neural networks
    • Springer, Berlin, Heidelberg
    • Inoue H., Narihisa H. Effective pruning method for a multiple classifier system based on self-generating neural networks. Artificial neural networks and neural information processing-ICANN/ICONIP 2003 2003, Vol. 2714:11-18. Springer, Berlin, Heidelberg.
    • (2003) Artificial neural networks and neural information processing-ICANN/ICONIP 2003 , vol.2714 , pp. 11-18
    • Inoue, H.1    Narihisa, H.2
  • 22
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, Vol. 43 1982, 59-69.
    • (1982) Biological Cybernetics, Vol. 43 , pp. 59-69
    • Kohonen, T.1
  • 23
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • MIT Press
    • Krogh A., Vedelsby J. Neural network ensembles, cross validation, and active learning. Adv. in NIPS 1995, 231-238. MIT Press.
    • (1995) Adv. in NIPS , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 24
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomforest
    • Liaw A., Wiener M. Classification and regression by randomforest. R News 2002, 2:18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 25
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Liu Y., Yao X. Ensemble learning via negative correlation. Neurocomputing 1999, 12:1399-1404.
    • (1999) Neurocomputing , vol.12 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 26
    • 0002320685 scopus 로고
    • Script recognition with hierarchical feature maps
    • Miikkulainen R. Script recognition with hierarchical feature maps. Connection Science 1990, 2:83-101.
    • (1990) Connection Science , vol.2 , pp. 83-101
    • Miikkulainen, R.1
  • 27
    • 57649214915 scopus 로고
    • Associative reinforcement learning for optimal control. In Proc. conf. on AIAA guid. nav. and cont.
    • Millington, P. J., & Baker, W. L. (1990). Associative reinforcement learning for optimal control. In Proc. conf. on AIAA guid. nav. and cont. Vol. 2 (pp. 1120-1128).
    • (1990) , vol.2 , pp. 1120-1128
    • Millington, P.J.1    Baker, W.L.2
  • 28
    • 67349147665 scopus 로고    scopus 로고
    • Negative correlation in incremental learning
    • Minku F.L., Inoue H., Yao X. Negative correlation in incremental learning. Natural Computing 2009, 8:289-320.
    • (2009) Natural Computing , vol.8 , pp. 289-320
    • Minku, F.L.1    Inoue, H.2    Yao, X.3
  • 29
    • 62649156365 scopus 로고    scopus 로고
    • Optimization of self-organizing maps ensemble in prediction. In International conference on data mining. DMIN'08.
    • Prudhomme, E., & Lallich, S. (2008). Optimization of self-organizing maps ensemble in prediction. In International conference on data mining. DMIN'08.
    • (2008)
    • Prudhomme, E.1    Lallich, S.2
  • 30
    • 78649651034 scopus 로고    scopus 로고
    • R Development Core Team (2008). R: a language and environment for statistical computing. R Foundation for Stat. Comp. Austria. ISBN: 3-900051-07-0.
    • R Development Core Team (2008). R: a language and environment for statistical computing. R Foundation for Stat. Comp. Austria. ISBN: 3-900051-07-0.
  • 31
    • 0000232749 scopus 로고
    • Learning with the self-organizing map
    • Elsevier Science Publishers, T. Kohonen (Ed.)
    • Ritter H. Learning with the self-organizing map. Artificial neural networks 1991, 379-384. Elsevier Science Publishers. T. Kohonen (Ed.).
    • (1991) Artificial neural networks , pp. 379-384
    • Ritter, H.1
  • 32
    • 78649652319 scopus 로고    scopus 로고
    • Lerranco: SOM ensembles. R package version 0.1.
    • Scherbart, A. (2009). Lerranco: SOM ensembles. R package version 0.1.
    • (2009)
    • Scherbart, A.1
  • 33
    • 70349087319 scopus 로고    scopus 로고
    • The diversity of regression ensembles combining bagging and random subspace method
    • Springer, M. Köppen, N.K. Kasabov, G.G. Coghill (Eds.) ICONIP (2)
    • Scherbart A., Nattkemper T.W. The diversity of regression ensembles combining bagging and random subspace method. Lecture notes in computer science 2008, Vol. 5507:911-918. Springer. M. Köppen, N.K. Kasabov, G.G. Coghill (Eds.).
    • (2008) Lecture notes in computer science , vol.5507 , pp. 911-918
    • Scherbart, A.1    Nattkemper, T.W.2
  • 34
    • 84893483286 scopus 로고    scopus 로고
    • Som-based peptide prototyping for mass spectrometry peak intensity prediction. In WSOM'07.
    • Scherbart, A., Timm, W., Böcker, S., & Nattkemper, T. W. (2007). Som-based peptide prototyping for mass spectrometry peak intensity prediction. In WSOM'07.
    • (2007)
    • Scherbart, A.1    Timm, W.2    Böcker, S.3    Nattkemper, T.W.4
  • 36
    • 57649238001 scopus 로고    scopus 로고
    • Peak intensity prediction in MALDI-TOF mass spectrometry: a machine learning study to support quantitative proteomics
    • Timm W., Scherbart A., Böcker S., Kohlbacher O., Nattkemper T.W. Peak intensity prediction in MALDI-TOF mass spectrometry: a machine learning study to support quantitative proteomics. BMC Bioinformatics 2008, 9:443.
    • (2008) BMC Bioinformatics , vol.9 , pp. 443
    • Timm, W.1    Scherbart, A.2    Böcker, S.3    Kohlbacher, O.4    Nattkemper, T.W.5
  • 37
    • 78649649459 scopus 로고    scopus 로고
    • Statlib datasets archive.
    • Vlachos, P. (2005). Statlib datasets archive.
    • (2005)
    • Vlachos, P.1
  • 38
    • 78649640902 scopus 로고    scopus 로고
    • PLS: Partial Least Squares Regression (PLSR) and Principal Component Regression (PCR). R package version 2.1-0.
    • Wehrens, R., & Mevik, B. -H. (2007). PLS: Partial Least Squares Regression (PLSR) and Principal Component Regression (PCR). R package version 2.1-0.
    • (2007)
    • Wehrens, R.1    Mevik, B.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.