-
1
-
-
78649644446
-
-
UCI machine learning repository.
-
Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository.
-
(2007)
-
-
Asuncion, A.1
Newman, D.J.2
-
2
-
-
0035478854
-
-
Random forests. In Machine learning
-
Breiman, L. (2001). Random forests. In Machine learning (pp. 5-32).
-
(2001)
, pp. 5-32
-
-
Breiman, L.1
-
3
-
-
0030211964
-
-
Bagging predictors. In Machine learning
-
Breiman, L. (1996). Bagging predictors. In Machine learning (pp. 123-140).
-
(1996)
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
78649650244
-
-
Diversity in neural network ensembles. Ph.D. thesis. University of Birmingham.
-
Brown, G. (2004). Diversity in neural network ensembles. Ph.D. thesis. University of Birmingham.
-
(2004)
-
-
Brown, G.1
-
5
-
-
10444221886
-
Diversity creation methods: a survey and categorisation
-
Brown G., Wyatt J., Harris R., Yao X. Diversity creation methods: a survey and categorisation. Journal of Information Fusion 2005, 6:5-20.
-
(2005)
Journal of Information Fusion
, vol.6
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
6
-
-
25444460435
-
Between two extremes: examining decompositions of the ensemble objective function
-
International workshop on multiple classifier systems
-
Brown G., Wyatt J., Sun P. Between two extremes: examining decompositions of the ensemble objective function. LNCS 2005, Vol. 3541.
-
(2005)
LNCS
, vol.3541
-
-
Brown, G.1
Wyatt, J.2
Sun, P.3
-
9
-
-
58449125360
-
-
A data mining approach to predict forest fires using meteorological data. In J. Neves, M. F. Santos & J. Machado (Eds.) New trends in artificial intelligence, proceedings of the 13th EPIA 2007-Portuguese conference on artificial intelligence
-
Cortez, P., & Morais, A. (2007). A data mining approach to predict forest fires using meteorological data. In J. Neves, M. F. Santos & J. Machado (Eds.) New trends in artificial intelligence, proceedings of the 13th EPIA 2007-Portuguese conference on artificial intelligence (pp. 512-523.
-
(2007)
, pp. 512-523
-
-
Cortez, P.1
Morais, A.2
-
10
-
-
0003477718
-
The handbook of brain theory and neural networks
-
The MIT Press, Cambridge, MA, (Chapter), M.A. Arbib (Ed.)
-
Dietterich T.G. The handbook of brain theory and neural networks. Ensemble learning 2002, 405-408. The MIT Press, Cambridge, MA, (Chapter). second ed. M.A. Arbib (Ed.).
-
(2002)
Ensemble learning
, pp. 405-408
-
-
Dietterich, T.G.1
-
11
-
-
78649667386
-
-
E1071: misc functions of the department of statistics (e1071). TU Wien. R package version 1.5-19.
-
Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., & Weingessel, A. (2009). E1071: misc functions of the department of statistics (e1071). TU Wien. R package version 1.5-19.
-
(2009)
-
-
Dimitriadou, E.1
Hornik, K.2
Leisch, F.3
Meyer, D.4
Weingessel, A.5
-
12
-
-
0033703441
-
The growing hierarchical self-organizing map
-
IEEE Computer Society
-
Dittenbach M., Merkl D., Rauber A. The growing hierarchical self-organizing map. IJCNN (6) 2000, 15-19. IEEE Computer Society.
-
(2000)
IJCNN (6)
, pp. 15-19
-
-
Dittenbach, M.1
Merkl, D.2
Rauber, A.3
-
14
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman J.H. Multivariate adaptive regression splines. The Annals of Statistics 1991, 19:1-67.
-
(1991)
The Annals of Statistics
, vol.19
, pp. 1-67
-
-
Friedman, J.H.1
-
15
-
-
0001948145
-
Fast learning with incremental RBF networks
-
Fritzke B. Fast learning with incremental RBF networks. Neural Processing Letters 1994, 2-5.
-
(1994)
Neural Processing Letters
, pp. 2-5
-
-
Fritzke, B.1
-
17
-
-
84958986941
-
Self organized partitioning of chaotic attractors for control
-
Springer-Verlag, London, UK
-
Goerke N., Kintzler F., Eckmiller R. Self organized partitioning of chaotic attractors for control. ICANN'01: proceedings of the international conference on artificial neural networks 2001, 851-856. Springer-Verlag, London, UK.
-
(2001)
ICANN'01: proceedings of the international conference on artificial neural networks
, pp. 851-856
-
-
Goerke, N.1
Kintzler, F.2
Eckmiller, R.3
-
18
-
-
0003684449
-
-
Springer
-
Hastie T., Tibshirani R., Friedman J. The elements of statistical learning: data mining, inference, and prediction 2001, Springer.
-
(2001)
The elements of statistical learning: data mining, inference, and prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
20
-
-
35248878650
-
Effective pruning method for a multiple classifier system based on self-generating neural networks
-
Springer, Berlin, Heidelberg
-
Inoue H., Narihisa H. Effective pruning method for a multiple classifier system based on self-generating neural networks. Artificial neural networks and neural information processing-ICANN/ICONIP 2003 2003, Vol. 2714:11-18. Springer, Berlin, Heidelberg.
-
(2003)
Artificial neural networks and neural information processing-ICANN/ICONIP 2003
, vol.2714
, pp. 11-18
-
-
Inoue, H.1
Narihisa, H.2
-
22
-
-
0020068152
-
Self-organized formation of topologically correct feature maps
-
Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, Vol. 43 1982, 59-69.
-
(1982)
Biological Cybernetics, Vol. 43
, pp. 59-69
-
-
Kohonen, T.1
-
23
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
MIT Press
-
Krogh A., Vedelsby J. Neural network ensembles, cross validation, and active learning. Adv. in NIPS 1995, 231-238. MIT Press.
-
(1995)
Adv. in NIPS
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
24
-
-
0345040873
-
Classification and regression by randomforest
-
Liaw A., Wiener M. Classification and regression by randomforest. R News 2002, 2:18-22.
-
(2002)
R News
, vol.2
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
25
-
-
0033485370
-
Ensemble learning via negative correlation
-
Liu Y., Yao X. Ensemble learning via negative correlation. Neurocomputing 1999, 12:1399-1404.
-
(1999)
Neurocomputing
, vol.12
, pp. 1399-1404
-
-
Liu, Y.1
Yao, X.2
-
26
-
-
0002320685
-
Script recognition with hierarchical feature maps
-
Miikkulainen R. Script recognition with hierarchical feature maps. Connection Science 1990, 2:83-101.
-
(1990)
Connection Science
, vol.2
, pp. 83-101
-
-
Miikkulainen, R.1
-
27
-
-
57649214915
-
-
Associative reinforcement learning for optimal control. In Proc. conf. on AIAA guid. nav. and cont.
-
Millington, P. J., & Baker, W. L. (1990). Associative reinforcement learning for optimal control. In Proc. conf. on AIAA guid. nav. and cont. Vol. 2 (pp. 1120-1128).
-
(1990)
, vol.2
, pp. 1120-1128
-
-
Millington, P.J.1
Baker, W.L.2
-
28
-
-
67349147665
-
Negative correlation in incremental learning
-
Minku F.L., Inoue H., Yao X. Negative correlation in incremental learning. Natural Computing 2009, 8:289-320.
-
(2009)
Natural Computing
, vol.8
, pp. 289-320
-
-
Minku, F.L.1
Inoue, H.2
Yao, X.3
-
29
-
-
62649156365
-
-
Optimization of self-organizing maps ensemble in prediction. In International conference on data mining. DMIN'08.
-
Prudhomme, E., & Lallich, S. (2008). Optimization of self-organizing maps ensemble in prediction. In International conference on data mining. DMIN'08.
-
(2008)
-
-
Prudhomme, E.1
Lallich, S.2
-
30
-
-
78649651034
-
-
R Development Core Team (2008). R: a language and environment for statistical computing. R Foundation for Stat. Comp. Austria. ISBN: 3-900051-07-0.
-
R Development Core Team (2008). R: a language and environment for statistical computing. R Foundation for Stat. Comp. Austria. ISBN: 3-900051-07-0.
-
-
-
-
31
-
-
0000232749
-
Learning with the self-organizing map
-
Elsevier Science Publishers, T. Kohonen (Ed.)
-
Ritter H. Learning with the self-organizing map. Artificial neural networks 1991, 379-384. Elsevier Science Publishers. T. Kohonen (Ed.).
-
(1991)
Artificial neural networks
, pp. 379-384
-
-
Ritter, H.1
-
32
-
-
78649652319
-
-
Lerranco: SOM ensembles. R package version 0.1.
-
Scherbart, A. (2009). Lerranco: SOM ensembles. R package version 0.1.
-
(2009)
-
-
Scherbart, A.1
-
33
-
-
70349087319
-
The diversity of regression ensembles combining bagging and random subspace method
-
Springer, M. Köppen, N.K. Kasabov, G.G. Coghill (Eds.) ICONIP (2)
-
Scherbart A., Nattkemper T.W. The diversity of regression ensembles combining bagging and random subspace method. Lecture notes in computer science 2008, Vol. 5507:911-918. Springer. M. Köppen, N.K. Kasabov, G.G. Coghill (Eds.).
-
(2008)
Lecture notes in computer science
, vol.5507
, pp. 911-918
-
-
Scherbart, A.1
Nattkemper, T.W.2
-
34
-
-
84893483286
-
-
Som-based peptide prototyping for mass spectrometry peak intensity prediction. In WSOM'07.
-
Scherbart, A., Timm, W., Böcker, S., & Nattkemper, T. W. (2007). Som-based peptide prototyping for mass spectrometry peak intensity prediction. In WSOM'07.
-
(2007)
-
-
Scherbart, A.1
Timm, W.2
Böcker, S.3
Nattkemper, T.W.4
-
36
-
-
57649238001
-
Peak intensity prediction in MALDI-TOF mass spectrometry: a machine learning study to support quantitative proteomics
-
Timm W., Scherbart A., Böcker S., Kohlbacher O., Nattkemper T.W. Peak intensity prediction in MALDI-TOF mass spectrometry: a machine learning study to support quantitative proteomics. BMC Bioinformatics 2008, 9:443.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 443
-
-
Timm, W.1
Scherbart, A.2
Böcker, S.3
Kohlbacher, O.4
Nattkemper, T.W.5
-
37
-
-
78649649459
-
-
Statlib datasets archive.
-
Vlachos, P. (2005). Statlib datasets archive.
-
(2005)
-
-
Vlachos, P.1
-
38
-
-
78649640902
-
-
PLS: Partial Least Squares Regression (PLSR) and Principal Component Regression (PCR). R package version 2.1-0.
-
Wehrens, R., & Mevik, B. -H. (2007). PLS: Partial Least Squares Regression (PLSR) and Principal Component Regression (PCR). R package version 2.1-0.
-
(2007)
-
-
Wehrens, R.1
Mevik, B.H.2
|