-
2
-
-
78649401300
-
-
Li Y F, Yang Y, Sun B, Song H Z, Wei Y H and Zhang P 2010 Chin. Phys. B 19 058201
-
(2010)
Chin. Phys. B
, vol.19
, pp. 058201
-
-
Li, Y.F.1
Yang, Y.2
Sun, B.3
Song, H.Z.4
Wei, Y.H.5
Zhang, P.6
-
5
-
-
78649394581
-
-
in Chinese
-
Chen Z G, Huang Z G, Wu Q Y, Xu G G and Zhang J M 2009 Acta Phys. Sin. 58 1924 (in Chinese)
-
(2009)
Acta Phys. Sin.
, vol.58
, pp. 1924
-
-
Chen, Z.G.1
Huang, Z.G.2
Wu, Q.Y.3
Xu, G.G.4
Zhang, J.M.5
-
7
-
-
4043132292
-
-
Upton M H, Wei C M, Chou M Y, Miller T and Chiang T C 2004 Phys. Rev. Lett. 93 026802
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 026802
-
-
Upton, M.H.1
Wei, C.M.2
Chou, M.Y.3
Miller, T.4
Chiang, T.C.5
-
8
-
-
18144370825
-
-
Lin H Y, Chiu Y P, Huang L W, Chen Y W, Fu T Y, Chang C S and Tsong T T 2005 Phys. Rev. Lett. 94 136101
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 136101
-
-
Lin, H.Y.1
Chiu, Y.P.2
Huang, L.W.3
Chen, Y.W.4
Fu, T.Y.5
Chang, C.S.6
Tsong, T.T.7
-
12
-
-
0037644850
-
-
Menzel A, Kammler M, Conrad E H, Yeh V, Hupalo M and Tringides M C 2003 Phys. Rev. B 67 165314
-
(2003)
Phys. Rev. B
, vol.67
, pp. 165314
-
-
Menzel, A.1
Kammler, M.2
Conrad, E.H.3
Yeh, V.4
Hupalo, M.5
Tringides, M.C.6
-
14
-
-
34347390758
-
-
Ma X C, Jiang P, Qi Y, Jia J F, Yang Y, Duan W H, Li W X, Bao X H, Zhang S B and Xue Q K 2007 Proc. Nat. Acad. Sci. USA 104 9204
-
(2007)
Proc. Nat. Acad. Sci. USA
, vol.104
, pp. 9204
-
-
Ma, X.C.1
Jiang, P.2
Qi, Y.3
Jia, J.F.4
Yang, Y.5
Duan, W.H.6
Li, W.X.7
Bao, X.H.8
Zhang, S.B.9
Xue, Q.K.10
-
15
-
-
84884348862
-
-
Jiang C S, Li S C, Yu H B, Eom D, Wang X D, Ebert P, Jia J F, Xue Q K and Shih C K 2004 Phys. Rev. Lett. 92 106104
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 106104
-
-
Jiang, C.S.1
Li, S.C.2
Yu, H.B.3
Eom, D.4
Wang, X.D.5
Ebert, P.6
Jia, J.F.7
Xue, Q.K.8
Shih, C.K.9
-
16
-
-
33744801383
-
-
Chan T L, Wang C Z, Hupalo M, Tringides M C and Ho K M 2006 Phys. Rev. Lett. 96 226102
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 226102
-
-
Chan, T.L.1
Wang, C.Z.2
Hupalo, M.3
Tringides, M.C.4
Ho, K.M.5
-
21
-
-
18344406437
-
-
Schoiswohl J, Kresse G, Surnev S, Sock M, Ramsey M G and Netzer F P 2004 Phys. Rev. Lett. 92 206103
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 206103
-
-
Schoiswohl, J.1
Kresse, G.2
Surnev, S.3
Sock, M.4
Ramsey, M.G.5
Netzer, F.P.6
-
22
-
-
8444226786
-
-
Schoiswohl J, Surnev S, Sock M, Ramsey M G, Kresse G and Netzer F P 2004 Angew. Chem. Int. Ed. 43 5546
-
(2004)
Angew. Chem. Int. Ed.
, vol.43
, pp. 5546
-
-
Schoiswohl, J.1
Surnev, S.2
Sock, M.3
Ramsey, M.G.4
Kresse, G.5
Netzer, F.P.6
-
31
-
-
42949085639
-
-
Yang Y, Zhou G, Wu J, Duan W H, Xue Q K, Gu B L, Jiang P, Ma X C and Zhang S B 2008 J. Chem. Phys. 128 164705
-
(2008)
J. Chem. Phys.
, vol.128
, pp. 164705
-
-
Yang, Y.1
Zhou, G.2
Wu, J.3
Duan, W.H.4
Xue, Q.K.5
Gu, B.L.6
Jiang, P.7
Ma, X.C.8
Zhang, S.B.9
-
32
-
-
36549100412
-
-
Electron localization function (ELF) ranges from 0 and 1. In a structural complex, it provides a good description of the polycentric bonding as a function of the real-space coordinates. Generally speaking, a higher ELF implies a lower Pauli kinetic energy, which corresponds to having localized covalent bonds or lone electron pairs (ELF = 1 would correspond to a perfect localization)
-
Electron localization function (ELF) ranges from 0 and 1. In a structural complex, it provides a good description of the polycentric bonding as a function of the real-space coordinates. Generally speaking, a higher ELF implies a lower Pauli kinetic energy, which corresponds to having localized covalent bonds or lone electron pairs (ELF = 1 would correspond to a perfect localization). For more details, see Becke A D and and Edgecombe K E 1990 J. Chem. Phys. 92 5397
-
(1990)
J. Chem. Phys.
, vol.92
, pp. 5397
-
-
Becke, A.D.1
Edgecombe, K.E.2
|