메뉴 건너뛰기




Volumn 3, Issue , 2010, Pages 1461-1464

Mining maximal frequent itemsets on graphics processors

Author keywords

[No Author keywords available]

Indexed keywords

CONDENSED REPRESENTATIONS; DATA ARCHITECTURES; EFFICIENT IMPLEMENTATION; FREQUENT ITEMSETS; GRAPHICS PROCESSING UNIT; GRAPHICS PROCESSOR; MAXIMAL FREQUENT ITEMSET MINING; MAXIMAL FREQUENT ITEMSETS;

EID: 78649313724     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FSKD.2010.5569206     Document Type: Conference Paper
Times cited : (9)

References (22)
  • 2
    • 0029752925 scopus 로고    scopus 로고
    • Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total
    • J.Gray, A.Bosworth, A.Layman and H.Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total, in Proc. ICDE'1996
    • Proc. ICDE'1996
    • Gray, J.1    Bosworth, A.2    Layman, A.3    Pirahesh, H.4
  • 3
    • 33947607609 scopus 로고    scopus 로고
    • GPUTeraSort: High performance graphics co-processor sorting for large database management
    • N.Govindaraju, J.Gray, R.Kumar and D.Manocha. GPUTeraSort: high performance graphics co-processor sorting for large database management, in Proc. SIGMOD'2008
    • Proc. SIGMOD'2008
    • Govindaraju, N.1    Gray, J.2    Kumar, R.3    Manocha, D.4
  • 4
    • 51449089689 scopus 로고    scopus 로고
    • Fast Parallel GPU-Sorting Using a Hybrid Algirthm
    • E.Sintorn and U.Assarsson. Fast Parallel GPU-Sorting Using a Hybrid Algirthm, in JPDC'2008
    • JPDC'2008
    • Sintorn, E.1    Assarsson, U.2
  • 6
    • 78149351437 scopus 로고    scopus 로고
    • Efficiently Mining Maximal Frequent Itemsets
    • K.Gouda and M.J.Zaki. Efficiently Mining Maximal Frequent Itemsets, in Proc.ICDM'2001.
    • Proc.ICDM'2001
    • Gouda, K.1    Zaki, M.J.2
  • 7
    • 0032091573 scopus 로고    scopus 로고
    • Efficiently Mining Long Patterns from Databases
    • R.J.Bayardo. Efficiently Mining Long Patterns from Databases, in Proc.SIGMOD'1998.
    • Proc.SIGMOD'1998
    • Bayardo, R.J.1
  • 9
    • 0035007850 scopus 로고    scopus 로고
    • MAFIA: A Maximal Frequent Itemsets Algorithm for Transactional Databases
    • D.Burdick, M.Calimlim and J.Gehrke. MAFIA: A Maximal Frequent Itemsets Algorithm for Transactional Databases, in Proc. ICDE'2001.
    • Proc. ICDE'2001
    • Burdick, D.1    Calimlim, M.2    Gehrke, J.3
  • 11
    • 85088190556 scopus 로고    scopus 로고
    • The Complexity of Mining Maximal Frequent Itemsets and Maximal Frequent Patterns
    • G.Yang. The Complexity of Mining Maximal Frequent Itemsets and Maximal Frequent Patterns. in Proc. SIGKDD'2004.
    • Proc. SIGKDD'2004
    • Yang, G.1
  • 12
    • 0037243046 scopus 로고    scopus 로고
    • Free-sets: A condensed representation of boolean data for the approximation of frequency queries
    • J.Boulicaut, A.Bykowski, and C.Rigotti, Free-sets: a condensed representation of boolean data for the approximation of frequency queries, Data Mining and Knowledge Discovery, 7 (2003) 5-22
    • (2003) Data Mining and Knowledge Discovery , vol.7 , pp. 5-22
    • Boulicaut, J.1    Bykowski, A.2    Rigotti, C.3
  • 13
  • 16
    • 77956460692 scopus 로고    scopus 로고
    • Mining frequent patterns by pattern-growth: Methodology and implications
    • J.Han, and J.Pei, Mining frequent patterns by pattern-growth: methodology and implications, in: Proc. SIGKDD'2000
    • Proc. SIGKDD'2000
    • Han, J.1    Pei, J.2
  • 18
    • 34248150950 scopus 로고    scopus 로고
    • Mining Maximal Frequent Itemsets from Data Streams
    • G.Mao, X.Wu, X.Zhu, and G.Chen, Mining Maximal Frequent Itemsets from Data Streams, Journal of Information Science 33 (3) (2007) 251-262
    • (2007) Journal of Information Science , vol.33 , Issue.3 , pp. 251-262
    • Mao, G.1    Wu, X.2    Zhu, X.3    Chen, G.4
  • 20
    • 33244463289 scopus 로고    scopus 로고
    • On Characterization and Discovery of Minimal Unexpected Patterns in Rule Discovery
    • B.Padmanabhan, and A.Tuzhilin, On Characterization and Discovery of Minimal Unexpected Patterns in Rule Discovery, IEEE Transactions on Knowledge and Data Engineering 18 (2) (2006) 202-216
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.2 , pp. 202-216
    • Padmanabhan, B.1    Tuzhilin, A.2
  • 21
    • 77952367550 scopus 로고    scopus 로고
    • Weighted Association Rule Mining using Weighted Support and Significance Framework
    • F.Tao, F.Murtagh, and M.Farid, Weighted Association Rule Mining using Weighted Support and Significance Framework, in: Proc. SIGKDD'2003
    • Proc. SIGKDD'2003
    • Tao, F.1    Murtagh, F.2    Farid, M.3
  • 22
    • 49749089668 scopus 로고    scopus 로고
    • EstMax: Tracing Maximal Frequent Itemsets over Online Data Streams
    • H.J.Woo, and W.S.Lee, estMax: Tracing Maximal Frequent Itemsets over Online Data Streams, in: Proc. ICDM'2007
    • Proc. ICDM'2007
    • Woo, H.J.1    Lee, W.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.