메뉴 건너뛰기




Volumn 497, Issue , 2009, Pages 201-214

A two-level learning hierarchy of concept based keyword extraction for tag recommendations

Author keywords

Concept extraction; Keyword extraction; Machine learning; Recommender system; Social tagging

Indexed keywords

BETTER PERFORMANCE; CONCEPT EXTRACTION; CONCEPT-BASED; KEYWORD EXTRACTION; SOCIAL TAGGING; SOCIAL TAGGING SYSTEMS; TAG RECOMMENDATIONS; TEXTUAL CONTENT;

EID: 78649307361     PISSN: 16130073     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (13)

References (31)
  • 3
    • 0029546874 scopus 로고
    • Using linear algebra for intelligent information retrieval
    • W. M. Berry, S. T. Dumais, and G. W. O'Brien. Using linear algebra for intelligent information retrieval. SIAM Review, 37:573-595, 1995.
    • (1995) SIAM Review , vol.37 , pp. 573-595
    • Berry, W.M.1    Dumais, S.T.2    O'Brien, G.W.3
  • 4
    • 36749071484 scopus 로고    scopus 로고
    • Svd-based initialization: A head start on non-negative matrix factorization
    • C. Boutsidis and E. Gallopoulos. Svd-based initialization: A head start on non-negative matrix factorization. Pattern Recognition, 41(4):1350-1362, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.4 , pp. 1350-1362
    • Boutsidis, C.1    Gallopoulos, E.2
  • 5
    • 38049040239 scopus 로고    scopus 로고
    • Using concept lattices for text retrieval and mining
    • B. G. et al., editor Springer-Verlag
    • C. Carpineto and G. Romano. Using concept lattices for text retrieval and mining. In B. G. et al., editor, Formal Concept Analysis, pages 161-179. Springer-Verlag, 2005.
    • (2005) Formal Concept Analysis , pp. 161-179
    • Carpineto, C.1    Romano, G.2
  • 6
    • 84887458420 scopus 로고    scopus 로고
    • Optimality, computation, and interpretations of nonnegative matrix factorization
    • North Carolina State University
    • M. Chu, F. Diele, R. Plemmons, and S. Ragni. Optimality, computation, and interpretations of nonnegative matrix factorization. Technical report, Department of Mathematics, North Carolina State University, 2005.
    • (2005) Technical Report, Department of Mathematics
    • Chu, M.1    Diele, F.2    Plemmons, R.3    Ragni, S.4
  • 9
    • 33644912045 scopus 로고    scopus 로고
    • Usage patterns of collaborative tagging systems
    • S. Colder and B. Huberman. Usage patterns of collaborative tagging systems. Journal of Information Science, 32(2):198-208, 2006.
    • (2006) Journal of Information Science , vol.32 , Issue.2 , pp. 198-208
    • Colder, S.1    Huberman, B.2
  • 12
    • 84900510076 scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5:1457-1469, 1994.
    • (1994) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 17
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by nonnegative matrix factorization. Nature, 401:788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 19
    • 36348966695 scopus 로고    scopus 로고
    • On the convergence of multiplicative update algorithms for non-negative matrix factorization
    • C. J. Lin. On the convergence of multiplicative update algorithms for non-negative matrix factorization. IEEE Transactions on Neural Networks, 18:1589-1596, 2007.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , pp. 1589-1596
    • Lin, C.J.1
  • 20
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for non-negative matrix factorization
    • C. J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19:2756-2779, 2007.
    • (2007) Neural Computation , vol.19 , pp. 2756-2779
    • Lin, C.J.1
  • 24
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5:111-126, 1994.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 27
    • 26444477334 scopus 로고    scopus 로고
    • Unsupervised text learning for the learning of dogma-inspired ontologies
    • P. Buitelaar, P. Cimiano, and B. Magnini, editors IOS Press
    • M. L. Reinberger and P. Spyns. Unsupervised text learning for the learning of dogma-inspired ontologies. In P. Buitelaar, P. Cimiano, and B. Magnini, editors, Ontology Learning from Text: Method, Application and Evaluation, pages 29-43. IOS Press, 2005.
    • (2005) Ontology Learning from Text: Method, Application and Evaluation , pp. 29-43
    • Reinberger, M.L.1    Spyns, P.2
  • 30
    • 21844478478 scopus 로고    scopus 로고
    • Learning algorithms for keyphrase extraction
    • P. D. Turney. Learning algorithms for keyphrase extraction. Information Retrieval, 2(4):303-336, 2000.
    • (2000) Information Retrieval , vol.2 , Issue.4 , pp. 303-336
    • Turney, P.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.