-
6
-
-
85035808024
-
Etudes de problèmes d'optimal Design
-
Springer-Verlag, Berlin
-
Murat F., Simon S. Etudes de problèmes d'optimal Design. Lecture Notes in Computer Science 1976, vol. 41:54-62. Springer-Verlag, Berlin.
-
(1976)
Lecture Notes in Computer Science
, vol.41
, pp. 54-62
-
-
Murat, F.1
Simon, S.2
-
7
-
-
0001351887
-
Differentiation with respect to the domain in boundary value problems
-
Simon J. Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 1980, 2:649-687.
-
(1980)
Numer. Funct. Anal. Optim.
, vol.2
, pp. 649-687
-
-
Simon, J.1
-
10
-
-
0024105011
-
Generating optimal topology in structural design using a homogenization method
-
Bendsøe M.P., Kikuchi N. Generating optimal topology in structural design using a homogenization method. Comput. Methods Appl. Mech. Engrg. 1988, 71:197-224.
-
(1988)
Comput. Methods Appl. Mech. Engrg.
, vol.71
, pp. 197-224
-
-
Bendsøe, M.P.1
Kikuchi, N.2
-
11
-
-
0001695416
-
Optimal shape design as a material distribution problem
-
Bendsøe M.P. Optimal shape design as a material distribution problem. Struct. Optim. 1989, 1:193-202.
-
(1989)
Struct. Optim.
, vol.1
, pp. 193-202
-
-
Bendsøe, M.P.1
-
12
-
-
0001241926
-
Material interpolation schemes in topology optimization
-
Bendsøe M.P., Sigmund O. Material interpolation schemes in topology optimization. Arch. Appl. Mech. 1999, 69:635-654.
-
(1999)
Arch. Appl. Mech.
, vol.69
, pp. 635-654
-
-
Bendsøe, M.P.1
Sigmund, O.2
-
13
-
-
0001176192
-
Structural boundary design via level set method and immersed interface methods
-
Sethian J.A., Wiegmann A. Structural boundary design via level set method and immersed interface methods. J. Comput. Phys. 2000, 163:489-528.
-
(2000)
J. Comput. Phys.
, vol.163
, pp. 489-528
-
-
Sethian, J.A.1
Wiegmann, A.2
-
14
-
-
0000653948
-
Level set methods for optimization problems involving geometry and constraints I. Frequencies of a two-density inhomogeneous drum
-
Osher S., Santosa F. Level set methods for optimization problems involving geometry and constraints I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 2001, 171:272-288.
-
(2001)
J. Comput. Phys.
, vol.171
, pp. 272-288
-
-
Osher, S.1
Santosa, F.2
-
16
-
-
0842290715
-
Structural optimization using sensitivity analysis and a level-set method
-
Allaire G., Jouve F., Toader A. Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 2004, 194:363-393.
-
(2004)
J. Comput. Phys.
, vol.194
, pp. 363-393
-
-
Allaire, G.1
Jouve, F.2
Toader, A.3
-
17
-
-
20044371668
-
A level-set method for vibration and multiple loads structural optimization
-
Allaire G., Jouve F. A level-set method for vibration and multiple loads structural optimization. Comput. Methods Appl. Mech. Engrg. 2005, 194:3269-3290.
-
(2005)
Comput. Methods Appl. Mech. Engrg.
, vol.194
, pp. 3269-3290
-
-
Allaire, G.1
Jouve, F.2
-
18
-
-
33847065107
-
Velocity extension for the level-set method and multiple eigenvalues in shape optimization
-
de Gournay F. Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J. Control Optim. 2006, 45:343-367.
-
(2006)
SIAM J. Control Optim.
, vol.45
, pp. 343-367
-
-
de Gournay, F.1
-
20
-
-
34447270283
-
Incorporating topological derivatives into shape derivatives based level set methods
-
He L., Kao C.-Y., Osher S. Incorporating topological derivatives into shape derivatives based level set methods. J. Comput. Phys. 2007, 225:891-909.
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 891-909
-
-
He, L.1
Kao, C.-Y.2
Osher, S.3
-
21
-
-
0033330905
-
Maximizing band gaps in two-dimensional photonic crystals
-
Cox S.J., Dobson D.C. Maximizing band gaps in two-dimensional photonic crystals. SIAM J. Appl. Math. 1999, 59:2108-2120.
-
(1999)
SIAM J. Appl. Math.
, vol.59
, pp. 2108-2120
-
-
Cox, S.J.1
Dobson, D.C.2
-
22
-
-
0141933418
-
Band structure optimization of two-dimensional photonic crystals in H-polarization
-
Cox S.J., Dobson D.C. Band structure optimization of two-dimensional photonic crystals in H-polarization. J. Comput. Phys. 2000, 158:214-224.
-
(2000)
J. Comput. Phys.
, vol.158
, pp. 214-224
-
-
Cox, S.J.1
Dobson, D.C.2
-
23
-
-
23744470400
-
Maximizing band gaps in two dimensional photonic crystals by using level set methods
-
Kao C.-Y., Osher S., Yablonovitch E. Maximizing band gaps in two dimensional photonic crystals by using level set methods. Appl. Phys. B 2005, 81:235-244.
-
(2005)
Appl. Phys. B
, vol.81
, pp. 235-244
-
-
Kao, C.-Y.1
Osher, S.2
Yablonovitch, E.3
-
24
-
-
0030210970
-
A variational level set approach to multiphase motion
-
Zhao H.-K., Chan T.F., Merriman B., Osher S. A variational level set approach to multiphase motion. J. Comput. Phys. 1996, 127:179-195.
-
(1996)
J. Comput. Phys.
, vol.127
, pp. 179-195
-
-
Zhao, H.-K.1
Chan, T.F.2
Merriman, B.3
Osher, S.4
-
25
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
Rudin L., Osher S., Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D 1992, 60:259-268.
-
(1992)
Physica D
, vol.60
, pp. 259-268
-
-
Rudin, L.1
Osher, S.2
Fatemi, E.3
-
26
-
-
44749084234
-
Front propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations
-
Osher S., Sethian J.A. Front propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 1988, 79:12-49.
-
(1988)
J. Comput. Phys.
, vol.79
, pp. 12-49
-
-
Osher, S.1
Sethian, J.A.2
-
28
-
-
0037337788
-
Shock capturing, level sets, and PDE based methods in computer vision and image processing: a review of Osher's contributions
-
Fedkiw R., Sapiro G., Shu C.-W. Shock capturing, level sets, and PDE based methods in computer vision and image processing: a review of Osher's contributions. J. Comput. Phys. 2003, 185:309-341.
-
(2003)
J. Comput. Phys.
, vol.185
, pp. 309-341
-
-
Fedkiw, R.1
Sapiro, G.2
Shu, C.-W.3
-
29
-
-
78549265224
-
-
A fast hybid k-means level set algorithm for segmentation, in: Proceedings of the 4th Annual Hawaii International Conference Statistics and Mathematics.
-
F. Gibou, R. Fedkiw, A fast hybid k-means level set algorithm for segmentation, in: Proceedings of the 4th Annual Hawaii International Conference Statistics and Mathematics, 2006, pp. 281-291.
-
(2006)
, pp. 281-291
-
-
Gibou, F.1
Fedkiw, R.2
-
30
-
-
0035473388
-
A level set method for inverse problems
-
Burger M. A level set method for inverse problems. Inverse Probl. 2001, 17:1327-1355.
-
(2001)
Inverse Probl.
, vol.17
, pp. 1327-1355
-
-
Burger, M.1
-
31
-
-
0842312288
-
Incorporating topological derivatives into level set methods
-
Burger M., Hackl B., Ring W. Incorporating topological derivatives into level set methods. J. Comput. Phys. 2004, 194:344-362.
-
(2004)
J. Comput. Phys.
, vol.194
, pp. 344-362
-
-
Burger, M.1
Hackl, B.2
Ring, W.3
-
32
-
-
23844524180
-
A survey on level set methods for inverse problems and optimal design
-
Burger M., Osher S. A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math. 2005, 16:263-301.
-
(2005)
Eur. J. Appl. Math.
, vol.16
, pp. 263-301
-
-
Burger, M.1
Osher, S.2
-
33
-
-
84996143735
-
A level-set approach for inverse problems involving obstacles
-
Santosa F. A level-set approach for inverse problems involving obstacles. ESAIM Contr. Optim. Calc. Var. 1996, 1:17-33.
-
(1996)
ESAIM Contr. Optim. Calc. Var.
, vol.1
, pp. 17-33
-
-
Santosa, F.1
-
34
-
-
0344550387
-
Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients
-
Chan T.F., Tai X.-C. Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comput. Phys. 2003, 193:40-66.
-
(2003)
J. Comput. Phys.
, vol.193
, pp. 40-66
-
-
Chan, T.F.1
Tai, X.-C.2
-
35
-
-
0842267881
-
A framework for the construction of level set methods for shape optimization and reconstruction
-
Burger M. A framework for the construction of level set methods for shape optimization and reconstruction. Interf. Free Bound. 2003, 5:301-329.
-
(2003)
Interf. Free Bound.
, vol.5
, pp. 301-329
-
-
Burger, M.1
-
36
-
-
33846252014
-
An extended level set method for shape and topology optimization
-
Wang S.Y., Lim K.M., Khoo B.C., Wang M.Y. An extended level set method for shape and topology optimization. J. Comput. Phys. 2007, 221:395-421.
-
(2007)
J. Comput. Phys.
, vol.221
, pp. 395-421
-
-
Wang, S.Y.1
Lim, K.M.2
Khoo, B.C.3
Wang, M.Y.4
-
37
-
-
0442328973
-
" Color" level sets: a multi-phase method for structural topology optimization with multiple materials
-
Wang M.Y., Wang X. " Color" level sets: a multi-phase method for structural topology optimization with multiple materials. Comput. Methods Appl. Mech. Engrg. 2004, 193:469-496.
-
(2004)
Comput. Methods Appl. Mech. Engrg.
, vol.193
, pp. 469-496
-
-
Wang, M.Y.1
Wang, X.2
-
38
-
-
0000653947
-
Level set methods: an overview and some recent results
-
Osher S., Fedkiw R. Level set methods: an overview and some recent results. J. Comput. Phys. 2001, 169:463-502.
-
(2001)
J. Comput. Phys.
, vol.169
, pp. 463-502
-
-
Osher, S.1
Fedkiw, R.2
-
41
-
-
24644508476
-
A survey on multiple level set methods with applications for identifying piecewise constant functions
-
Tai X.-C., Chan T.F. A survey on multiple level set methods with applications for identifying piecewise constant functions. Int. J. Numer. Anal. Model. 2004, 1:25-48.
-
(2004)
Int. J. Numer. Anal. Model.
, vol.1
, pp. 25-48
-
-
Tai, X.-C.1
Chan, T.F.2
-
42
-
-
0037275743
-
On the relation between constraint regularization, level sets, and shape optimization
-
Leitão A., Scherzer O. On the relation between constraint regularization, level sets, and shape optimization. Inverse Probl. 2003, 19:1-11.
-
(2003)
Inverse Probl.
, vol.19
, pp. 1-11
-
-
Leitão, A.1
Scherzer, O.2
-
43
-
-
3242878427
-
A multilevel, level-set method for optimizing eigenvalues in shape design problems
-
Haber E. A multilevel, level-set method for optimizing eigenvalues in shape design problems. J. Comput. Phys. 2004, 198:518-534.
-
(2004)
J. Comput. Phys.
, vol.198
, pp. 518-534
-
-
Haber, E.1
-
44
-
-
3142698698
-
A simple mesh generator in matlab
-
Persson P.-O., Strang G. A simple mesh generator in matlab. SIAM Rev. 2004, 46:329-345.
-
(2004)
SIAM Rev.
, vol.46
, pp. 329-345
-
-
Persson, P.-O.1
Strang, G.2
-
45
-
-
78549241350
-
-
Circuit simulation and moving mesh generation, IEIC Tech. Rep.
-
P.-O. Persson, G. Strang, Circuit simulation and moving mesh generation, IEIC Tech. Rep. 104 (2004) 19-24.
-
(2004)
, vol.104
, pp. 19-24
-
-
Persson, P.-O.1
Strang, G.2
-
46
-
-
49549101797
-
Level set method with topological derivatives in shape optimization
-
Fulmanski P., Laurain A., Scheid J.-F., Sokołowski J. Level set method with topological derivatives in shape optimization. Int. J. Comp. Math. 2008, 85:1491-1514.
-
(2008)
Int. J. Comp. Math.
, vol.85
, pp. 1491-1514
-
-
Fulmanski, P.1
Laurain, A.2
Scheid, J.-F.3
Sokołowski, J.4
-
47
-
-
0032681559
-
On the topological derivative in shape optimization
-
Sokołowski J., Żochowski A. On the topological derivative in shape optimization. SIAM J. Control Optim. 1999, 37:1251-1272.
-
(1999)
SIAM J. Control Optim.
, vol.37
, pp. 1251-1272
-
-
Sokołowski, J.1
Zochowski, A.2
-
48
-
-
0033847129
-
The shape and topological optimization connection
-
Céa J., Garreau S., Guillaume P., Masmoudi M. The shape and topological optimization connection. Comput. Methods Appl. Mech. Engrg. 2000, 188:713-726.
-
(2000)
Comput. Methods Appl. Mech. Engrg.
, vol.188
, pp. 713-726
-
-
Céa, J.1
Garreau, S.2
Guillaume, P.3
Masmoudi, M.4
-
49
-
-
33646013275
-
A binary level set model and some applications to Mumford-Shah image segmentation
-
Lie J., Lysaker M., Tai X.-C. A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Trans. Image Process. 2006, 15:1171-1181.
-
(2006)
IEEE Trans. Image Process.
, vol.15
, pp. 1171-1181
-
-
Lie, J.1
Lysaker, M.2
Tai, X.-C.3
-
50
-
-
33746291689
-
A variant of the level set method and applications to image segmentation
-
Lie J., Lysaker M., Tai X.-C. A variant of the level set method and applications to image segmentation. Math. Comput. 2006, 75:1155-1174.
-
(2006)
Math. Comput.
, vol.75
, pp. 1155-1174
-
-
Lie, J.1
Lysaker, M.2
Tai, X.-C.3
-
51
-
-
33846621880
-
Image segmentation using some piecewise constant level set methods with MBO type of projection
-
Tai X.-C., Christiansen O. Image segmentation using some piecewise constant level set methods with MBO type of projection. Int. J. Comput. Vision 2007, 73:61-76.
-
(2007)
Int. J. Comput. Vision
, vol.73
, pp. 61-76
-
-
Tai, X.-C.1
Christiansen, O.2
-
52
-
-
78549271203
-
-
A fast algorithm for level set based optimization, UCLA, CAM-Report 02-68 2002.
-
B. Song, T.F. Chan, A fast algorithm for level set based optimization, UCLA, CAM-Report 02-68 2002.
-
-
-
Song, B.1
Chan, T.F.2
-
53
-
-
38049120696
-
A binary level set model for elliptic inverse problems with discontinuous coefficients
-
Nielsen L.K., Tai X.-C., Aanonsen S.I., Espedal M. A binary level set model for elliptic inverse problems with discontinuous coefficients. Int. J. Numer. Anal. Mod. 2007, 4:74-99.
-
(2007)
Int. J. Numer. Anal. Mod.
, vol.4
, pp. 74-99
-
-
Nielsen, L.K.1
Tai, X.-C.2
Aanonsen, S.I.3
Espedal, M.4
-
56
-
-
33846686028
-
Phase-field relaxation of topology optimization with local stress constraints
-
Burger M., Stainko R. Phase-field relaxation of topology optimization with local stress constraints. SIAM J. Control Optim. 2006, 45:1447-1466.
-
(2006)
SIAM J. Control Optim.
, vol.45
, pp. 1447-1466
-
-
Burger, M.1
Stainko, R.2
-
57
-
-
64049088299
-
Piecewise constant level set method for structural topology optimization
-
Wei P., Wang M.Y. Piecewise constant level set method for structural topology optimization. Int. J. Numer. Methods Engrg. 2009, 78:379-402.
-
(2009)
Int. J. Numer. Methods Engrg.
, vol.78
, pp. 379-402
-
-
Wei, P.1
Wang, M.Y.2
-
58
-
-
2942612639
-
Identification of discontinuous coefficients in elliptic problems using total variation regularization
-
Chan T.F., Tai X.-C. Identification of discontinuous coefficients in elliptic problems using total variation regularization. SIAM J. Sci. Comput. 2003, 25:881-904.
-
(2003)
SIAM J. Sci. Comput.
, vol.25
, pp. 881-904
-
-
Chan, T.F.1
Tai, X.-C.2
-
59
-
-
0002501641
-
Sequential and parallel splitting methods for bilinear control problems in Hilbert spaces
-
Kunisch K., Tai X.-C. Sequential and parallel splitting methods for bilinear control problems in Hilbert spaces. SIAM J. Numer. Anal. 1997, 34:91-118.
-
(1997)
SIAM J. Numer. Anal.
, vol.34
, pp. 91-118
-
-
Kunisch, K.1
Tai, X.-C.2
-
61
-
-
2442711821
-
Analysis of iterative algorithms of Uzawa type for saddle point problems
-
Cui M.-R. Analysis of iterative algorithms of Uzawa type for saddle point problems. Appl. Numer. Math. 2004, 50:133-146.
-
(2004)
Appl. Numer. Math.
, vol.50
, pp. 133-146
-
-
Cui, M.-R.1
-
63
-
-
0026204106
-
High order essentially non-oscillatory schemes for Hamilton-Jacobi equations
-
Osher S., Shu C.-W. High order essentially non-oscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 1991, 28:907-922.
-
(1991)
SIAM J. Numer. Anal.
, vol.28
, pp. 907-922
-
-
Osher, S.1
Shu, C.-W.2
-
64
-
-
0034503787
-
Weighted ENO schemes for Hamilton-Jacobi equations
-
Jiang G., Peng D. Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 1999, 21:2126-2143.
-
(1999)
SIAM J. Sci. Comput.
, vol.21
, pp. 2126-2143
-
-
Jiang, G.1
Peng, D.2
-
65
-
-
24644441054
-
-
Level set evolution without re-initialization: a new variational formulation, in: IEEE Conference on Computer Vision and Pattern Recognition, San Diego.
-
C.M. Li, C.Y. Xu, C.F. Gui, M.D. Fox, Level set evolution without re-initialization: a new variational formulation, in: IEEE Conference on Computer Vision and Pattern Recognition, San Diego, 2005, pp. 430-436.
-
(2005)
, pp. 430-436
-
-
Li, C.M.1
Xu, C.Y.2
Gui, C.F.3
Fox, M.D.4
|