메뉴 건너뛰기




Volumn 50, Issue 9, 2010, Pages

Missing data in model-based pharmacometric applications: Points to consider

Author keywords

clinical trial simulation; longitudinal; missing data; modeling simulation; Pharmacometrics; population pharmacokinetics

Indexed keywords

BIOMEDICINE; EXPERIMENTAL MODEL; MEDICAL INFORMATICS; MEDICAL INFORMATION; MEDICAL RECORD; MEDICAL RESEARCH; PHARMACOMETRICS; REVIEW; SIMULATION;

EID: 78449300997     PISSN: 00912700     EISSN: 15524604     Source Type: Journal    
DOI: 10.1177/0091270010378409     Document Type: Review
Times cited : (22)

References (22)
  • 3
    • 3843075419 scopus 로고    scopus 로고
    • Handling drop-out in longitudinal studies
    • Hogan JW, Roy J., Korkontzelou C. Handling drop-out in longitudinal studies. Stat Med. 2004 ; 23: 1455-1497.
    • (2004) Stat Med , vol.23 , pp. 1455-1497
    • Hogan, J.W.1    Roy, J.2    Korkontzelou, C.3
  • 4
    • 0022673130 scopus 로고
    • Longitudinal data analysis for discrete and continuous outcomes
    • Zeger SL, Liang KY Longitudinal data analysis for discrete and continuous outcomes. Biometrics. 1986 ; 42: 121-130.
    • (1986) Biometrics , vol.42 , pp. 121-130
    • Zeger, S.L.1    Liang, K.Y.2
  • 5
    • 0030343462 scopus 로고    scopus 로고
    • Distinguishing "missing at random" and "missing completely at random
    • Heitjan DF, Basu S. Distinguishing "missing at random" and "missing completely at random ". Am Stat. 1996 ; 50: 207-213.
    • (1996) Am Stat , vol.50 , pp. 207-213
    • Heitjan, D.F.1    Basu, S.2
  • 6
    • 0038402581 scopus 로고    scopus 로고
    • A joint model for nonlinear longitudinal data with informative dropout
    • Hu C., Sale ME A joint model for nonlinear longitudinal data with informative dropout. J Pharmacokinet Pharmacodyn. 2003 ; 30: 83-103.
    • (2003) J Pharmacokinet Pharmacodyn , vol.30 , pp. 83-103
    • Hu, C.1    Sale, M.E.2
  • 7
    • 0031319752 scopus 로고    scopus 로고
    • Analysis of nonrandomly censored ordered categorical longitudinal data from analgesic trials
    • Sheiner LB, Beal SL, Dunne A. Analysis of nonrandomly censored ordered categorical longitudinal data from analgesic trials. J Am Stat Assoc. 1997 ; 92: 1235-1244.
    • (1997) J Am Stat Assoc , vol.92 , pp. 1235-1244
    • Sheiner, L.B.1    Beal, S.L.2    Dunne, A.3
  • 8
    • 0032534724 scopus 로고    scopus 로고
    • Selection models for repeated measurements with non-random dropout: An illustration of sensitivity
    • Kenward MG Selection models for repeated measurements with non-random dropout: an illustration of sensitivity. Stat Med. 1998 ; 17: 2723-2732.
    • (1998) Stat Med , vol.17 , pp. 2723-2732
    • Kenward, M.G.1
  • 10
    • 15044358532 scopus 로고    scopus 로고
    • Multiple imputation for model checking: Completed-data plots with missing and latent data
    • Gelman A., Van MI, Verbeke G., Heitjan DF, Meulders M. Multiple imputation for model checking: completed-data plots with missing and latent data. Biometrics. 2005 ; 61: 74-85.
    • (2005) Biometrics , vol.61 , pp. 74-85
    • Gelman, A.1    Van, M.I.2    Verbeke, G.3    Heitjan, D.F.4    Meulders, M.5
  • 11
    • 43949145260 scopus 로고    scopus 로고
    • Extensions to the visual predictive check to facilitate model performance evaluation
    • Post TM, Freijer JI, Ploeger BA, Danhof M. Extensions to the visual predictive check to facilitate model performance evaluation. J Pharmacokinet Pharmacodyn. 2008 ; 35: 185-202.
    • (2008) J Pharmacokinet Pharmacodyn , vol.35 , pp. 185-202
    • Post, T.M.1    Freijer, J.I.2    Ploeger, B.A.3    Danhof, M.4
  • 12
    • 67650608192 scopus 로고    scopus 로고
    • Modeling and simulation of the time course of asenapine exposure response and dropout patterns in acute schizophrenia
    • Friberg L., de Greef R., Kerbusch T., Karlsson M. Modeling and simulation of the time course of asenapine exposure response and dropout patterns in acute schizophrenia. Clin Pharmacol Ther. 2009 ; 86: 84-91.
    • (2009) Clin Pharmacol Ther , vol.86 , pp. 84-91
    • Friberg, L.1    De Greef, R.2    Kerbusch, T.3    Karlsson, M.4
  • 13
    • 68249141539 scopus 로고    scopus 로고
    • Handling data below the limit of quantification in mixed effect models
    • Bergstrand M., Karlsson MO Handling data below the limit of quantification in mixed effect models. AAPS J. 2009 ; 11: 371-380.
    • (2009) AAPS J , vol.11 , pp. 371-380
    • Bergstrand, M.1    Karlsson, M.O.2
  • 14
    • 0035216180 scopus 로고    scopus 로고
    • Ways to fit a PK model with some data below the quantification limit
    • Beal SL Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001 ; 28: 481-504.
    • (2001) J Pharmacokinet Pharmacodyn , vol.28 , pp. 481-504
    • Beal, S.L.1
  • 15
    • 52549112649 scopus 로고    scopus 로고
    • Likelihood based approaches to handling data below the quantification limit using NONMEM VI
    • Ahn JE, Karlsson MO, Dunne A., Ludden TM Likelihood based approaches to handling data below the quantification limit using NONMEM VI. J Pharmacokinet Pharmacodyn. 2008 ; 35: 401-421.
    • (2008) J Pharmacokinet Pharmacodyn , vol.35 , pp. 401-421
    • Ahn, J.E.1    Karlsson, M.O.2    Dunne, A.3    Ludden, T.M.4
  • 16
    • 63149124918 scopus 로고    scopus 로고
    • A Bayesian sensitivity model for intention-to-treat analysis on binary outcomes with dropouts
    • Kaciroti NA, Schork MA, Raghunathan T., Julius S. A Bayesian sensitivity model for intention-to-treat analysis on binary outcomes with dropouts. Stat Med. 2009 ; 28: 572-585.
    • (2009) Stat Med , vol.28 , pp. 572-585
    • Kaciroti, N.A.1    Schork, M.A.2    Raghunathan, T.3    Julius, S.4
  • 17
    • 12344335515 scopus 로고    scopus 로고
    • An index of local sensitivity to nonignorability
    • Troxel A., Ma G., Heitjan DF An index of local sensitivity to nonignorability. Stat Sin. 2004 ; 14: 1221-1237.
    • (2004) Stat Sin , vol.14 , pp. 1221-1237
    • Troxel, A.1    Ma, G.2    Heitjan, D.F.3
  • 18
    • 33845489829 scopus 로고    scopus 로고
    • A simple local sensitivity analysis tool for nonignorable coarsening: Application to dependent censoring
    • Zhang J., Heitjan DF A simple local sensitivity analysis tool for nonignorable coarsening: application to dependent censoring. Biometrics. 2006 ; 62: 1260-1268.
    • (2006) Biometrics , vol.62 , pp. 1260-1268
    • Zhang, J.1    Heitjan, D.F.2
  • 19
    • 77953245795 scopus 로고    scopus 로고
    • Local sensitivity to nonignorability: Dependence on the assumed dropout mechanism
    • Xie H., Heitjan DF Local sensitivity to nonignorability: dependence on the assumed dropout mechanism. Stat Biopharm Res. 2009 ; 1: 243-257.
    • (2009) Stat Biopharm Res , vol.1 , pp. 243-257
    • Xie, H.1    Heitjan, D.F.2
  • 20
    • 21844459497 scopus 로고    scopus 로고
    • An index of local sensitivity to nonignorable drop-out in longitudinal modelling
    • Ma G., Troxel AB, Heitjan DF An index of local sensitivity to nonignorable drop-out in longitudinal modelling. Stat Med. 2005 ; 24: 2129-2150.
    • (2005) Stat Med , vol.24 , pp. 2129-2150
    • Ma, G.1    Troxel, A.B.2    Heitjan, D.F.3
  • 21
    • 58049191296 scopus 로고    scopus 로고
    • Modelling placebo response in depression trials using a longitudinal model with informative dropout
    • Gomeni R., Lavergne A., Merlo-Pich E. Modelling placebo response in depression trials using a longitudinal model with informative dropout. Eur J Pharm Sci. 2009 ; 36: 4-10.
    • (2009) Eur J Pharm Sci , vol.36 , pp. 4-10
    • Gomeni, R.1    Lavergne, A.2    Merlo-Pich, E.3
  • 22
    • 67651171223 scopus 로고    scopus 로고
    • Elucidation of relationship between tumor size and survival in non-small-cell lung cancer patients can aid early decision making in clinical drug development
    • Wang Y., Sung C., Dartois C., et al. Elucidation of relationship between tumor size and survival in non-small-cell lung cancer patients can aid early decision making in clinical drug development. Clin Pharmacol Ther. 2009 ; 86: 167-174.
    • (2009) Clin Pharmacol Ther , vol.86 , pp. 167-174
    • Wang, Y.1    Sung, C.2    Dartois, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.