메뉴 건너뛰기




Volumn 18, Issue 12, 2010, Pages 1418-1428

Identification and predictive control of a multistage evaporator

Author keywords

Automatic differentiation; Multiple effect evaporators; Nonlinear model predictive control; Nonlinear system identification; Recurrent neural networks

Indexed keywords

AUTOMATIC DIFFERENTIATIONS; CONTROL PERFORMANCE; DISTURBANCE REJECTION PROBLEM; IN-CONTROL; INPUT-OUTPUT DATA; LEVENBERG-MARQUARDT ALGORITHM; LINEAR MODEL; MECHANISTIC MODELS; MULTIPLE-EFFECT EVAPORATOR; NONLINEAR MODEL PREDICTIVE CONTROL; NONLINEAR SYSTEM IDENTIFICATION; OPTIMIZATION ALGORITHMS; PI CONTROL; PI CONTROLLER; PREDICTIVE CONTROL; SET-POINT TRACKING; SIMULATION MODEL; SYSTEM IDENTIFICATIONS;

EID: 78349311627     PISSN: 09670661     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.conengprac.2010.08.002     Document Type: Article
Times cited : (30)

References (47)
  • 1
    • 43149122014 scopus 로고    scopus 로고
    • Nonlinear system identification for predictive control using continuous-time recurrent neural networks
    • Al-Seyab R.K., Cao Y. Nonlinear system identification for predictive control using continuous-time recurrent neural networks. Journal of Process Control 2008, 18(6):568-581.
    • (2008) Journal of Process Control , vol.18 , Issue.6 , pp. 568-581
    • Al-Seyab, R.K.1    Cao, Y.2
  • 2
    • 42949171800 scopus 로고    scopus 로고
    • Differential recurrent neural network based predictive control
    • Al-Seyab R.K., Cao Y. Differential recurrent neural network based predictive control. Computers and Chemical Engineering 2008, 32(7):1533-1545.
    • (2008) Computers and Chemical Engineering , vol.32 , Issue.7 , pp. 1533-1545
    • Al-Seyab, R.K.1    Cao, Y.2
  • 3
    • 70349316323 scopus 로고    scopus 로고
    • Nonlinear Model Predictive of Control of a Multistage Evaporator System using Recurrent Neural Networks
    • DOI: 10.1109/ICIEA.2009.5138477, Article number 5138477
    • Atuonwu, J.C. , Cao, Y. , Rangaiah, G.P. , Tadé, M.O. Nonlinear Model Predictive of Control of a Multistage Evaporator System using Recurrent Neural Networks. 2009 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009 (2009),vol:2009, Article number 5138477, Pages 1662-1667, DOI: 10.1109/ICIEA.2009.5138477
    • (2009) 2009 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009 , vol.2009 , pp. 1662-1667
    • Atuonwu, J.C.1    Cao, Y.2    Rangaiah, G.P.3    Tadé, M.O.4
  • 4
    • 78349310899 scopus 로고    scopus 로고
    • Model predictive control design for industrial applications. In International Control Conference (ICC2006), Glasgow, UK.
    • Balbis, L., Katebi, R., & Ordys, A. (2006). Model predictive control design for industrial applications. In International Control Conference (ICC2006), Glasgow, UK.
    • (2006)
    • Balbis, L.1    Katebi, R.2    Ordys, A.3
  • 5
    • 0026849117 scopus 로고
    • Determining model structure for neural models by network stripping
    • Bhat N.V., McAvoy T.J. Determining model structure for neural models by network stripping. Computers and Chemical Engineering 1992, 16(4):271-281.
    • (1992) Computers and Chemical Engineering , vol.16 , Issue.4 , pp. 271-281
    • Bhat, N.V.1    McAvoy, T.J.2
  • 6
    • 78349306313 scopus 로고    scopus 로고
    • Industrial predictive control for hot rolling mill co-ordination. In Proceedings of the American Control Conference.
    • Bulut, B., Katebi, M. R., & Johnson, M. A. (2000). Industrial predictive control for hot rolling mill co-ordination. In Proceedings of the American Control Conference.
    • (2000)
    • Bulut, B.1    Katebi, M.R.2    Johnson, M.A.3
  • 7
    • 22344440650 scopus 로고    scopus 로고
    • A formulation of nonlinear model predictive control using automatic differentiation
    • Cao Y. A formulation of nonlinear model predictive control using automatic differentiation. Journal of Process Control 2005, 15(8):851-858.
    • (2005) Journal of Process Control , vol.15 , Issue.8 , pp. 851-858
    • Cao, Y.1
  • 8
    • 22344440118 scopus 로고    scopus 로고
    • Nonlinear model predictive control using automatic differentiation. In European Control Conference'2003 (CDROM), Cambridge, UK.
    • Cao, Y., & Al-Seyab, R. K. (2003). Nonlinear model predictive control using automatic differentiation. In European Control Conference'2003 (CDROM), Cambridge, UK.
    • (2003)
    • Cao, Y.1    Al-Seyab, R.K.2
  • 9
    • 0142197760 scopus 로고    scopus 로고
    • Neural network based predictive control for multivariable processes
    • Chen J., Yea Y. Neural network based predictive control for multivariable processes. Chemical Engineering Communications 2002, 189:865-894.
    • (2002) Chemical Engineering Communications , vol.189 , pp. 865-894
    • Chen, J.1    Yea, Y.2
  • 12
    • 78349311002 scopus 로고    scopus 로고
    • Controllability analysis of industrial five-effect evaporator system. In The Foundations of Computer Aided Process Operations (FOCAPO) 2003 Conference, Coral Springs, Florida, US.
    • Ekawati, E., Bahri, P. A., Lepage, G., & Noraii, A. (2003). Controllability analysis of industrial five-effect evaporator system. In The Foundations of Computer Aided Process Operations (FOCAPO) 2003 Conference, Coral Springs, Florida, US.
    • (2003)
    • Ekawati, E.1    Bahri, P.A.2    Lepage, G.3    Noraii, A.4
  • 13
    • 0027154319 scopus 로고
    • Approximation of dynamical systems by continuous-time recurrent neural networks
    • Funahashi K.L., Nakamura Y. Approximation of dynamical systems by continuous-time recurrent neural networks. Neural Networks 1993, 6:183-192.
    • (1993) Neural Networks , vol.6 , pp. 183-192
    • Funahashi, K.L.1    Nakamura, Y.2
  • 14
    • 0346856460 scopus 로고    scopus 로고
    • Application of recurrent neural networks for nonlinear inverse and predictive control of the heat transfer fluid temperature in a batch reactor
    • Galvan I.M., Zaldivar J.M. Application of recurrent neural networks for nonlinear inverse and predictive control of the heat transfer fluid temperature in a batch reactor. Chemical Engineerng and Processing 1998, 37:149-161.
    • (1998) Chemical Engineerng and Processing , vol.37 , pp. 149-161
    • Galvan, I.M.1    Zaldivar, J.M.2
  • 16
    • 34547149534 scopus 로고    scopus 로고
    • Nonlinear model predictive control of multivariable processes by block-structured models
    • Harnischmacher G., Marquardt W. Nonlinear model predictive control of multivariable processes by block-structured models. Control Engineering Practice 2007, 15:1238-1256.
    • (2007) Control Engineering Practice , vol.15 , pp. 1238-1256
    • Harnischmacher, G.1    Marquardt, W.2
  • 17
    • 0032455115 scopus 로고    scopus 로고
    • Nonlinear model predictive control: Current status and future directions
    • Henson M.A. Nonlinear model predictive control: Current status and future directions. Computers and Chemical Engineering 1998, 23(2):187-202.
    • (1998) Computers and Chemical Engineering , vol.23 , Issue.2 , pp. 187-202
    • Henson, M.A.1
  • 19
    • 2342508339 scopus 로고    scopus 로고
    • The nonlinear model predictive control of a chemical plant using multiple neural networks
    • Jazayeri-Rad H. The nonlinear model predictive control of a chemical plant using multiple neural networks. Neural Computers and Applications 2004, 13:2-15.
    • (2004) Neural Computers and Applications , vol.13 , pp. 2-15
    • Jazayeri-Rad, H.1
  • 21
    • 78349312081 scopus 로고    scopus 로고
    • Dynamic modeling and geometric analysis of an industrial multi-stage evaporation unit, Technical Report 1/97. Western Australia: School of Chemical Engineering, Curtin University of Technology.
    • Kam, K. M., & Tadé, M. O. (1997). Dynamic modeling and geometric analysis of an industrial multi-stage evaporation unit, Technical Report 1/97. Western Australia: School of Chemical Engineering, Curtin University of Technology.
    • (1997)
    • Kam, K.M.1    Tadé, M.O.2
  • 23
    • 0025403609 scopus 로고
    • Improvement of the back-propagation algorithm for training neural networks
    • Leonard J.A., Kramer M.A. Improvement of the back-propagation algorithm for training neural networks. Computers and Chemical Engineering 1990, 14:337-341.
    • (1990) Computers and Chemical Engineering , vol.14 , pp. 337-341
    • Leonard, J.A.1    Kramer, M.A.2
  • 24
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal of Applied Mathematics 1963, 11:431-441.
    • (1963) SIAM Journal of Applied Mathematics , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 25
    • 73349095686 scopus 로고    scopus 로고
    • Approximate predictive versus adaptive control strategies of biodiesel reactors
    • Mjalli F.S., Hussain M.A. Approximate predictive versus adaptive control strategies of biodiesel reactors. Industrial Engineering Chemistry Research 2009, 48(24):11034-11047.
    • (2009) Industrial Engineering Chemistry Research , vol.48 , Issue.24 , pp. 11034-11047
    • Mjalli, F.S.1    Hussain, M.A.2
  • 26
    • 67349244437 scopus 로고    scopus 로고
    • Artificial neural network based system identification and model predictive control of a flotation column
    • Mohanty S. Artificial neural network based system identification and model predictive control of a flotation column. Journal of Process Control 2009, 19:991-999.
    • (2009) Journal of Process Control , vol.19 , pp. 991-999
    • Mohanty, S.1
  • 27
    • 33846893475 scopus 로고    scopus 로고
    • Model based control of a yeast fermentation bioreactor using optimally designed artificial neural networks
    • Nagy Z.K. Model based control of a yeast fermentation bioreactor using optimally designed artificial neural networks. Chemical Engineering Journal 2007, 127:95-109.
    • (2007) Chemical Engineering Journal , vol.127 , pp. 95-109
    • Nagy, Z.K.1
  • 28
    • 34147117177 scopus 로고    scopus 로고
    • Evaluation study of an efficient output feedback nonlinear model predictive control for temperature tracking in an industrial batch reactor
    • Nagy Z., Mahn B., Franke R., Allgöwer F. Evaluation study of an efficient output feedback nonlinear model predictive control for temperature tracking in an industrial batch reactor. Control Engineering Practice 2007, 15:839-850.
    • (2007) Control Engineering Practice , vol.15 , pp. 839-850
    • Nagy, Z.1    Mahn, B.2    Franke, R.3    Allgöwer, F.4
  • 31
    • 0036527869 scopus 로고    scopus 로고
    • Grouped neural network modeling for model predictive control
    • Ou J., Rhinehart R.R. Grouped neural network modeling for model predictive control. ISA Transactions 2002, 41:195-202.
    • (2002) ISA Transactions , vol.41 , pp. 195-202
    • Ou, J.1    Rhinehart, R.R.2
  • 32
    • 0002161510 scopus 로고    scopus 로고
    • Nonlinear process identification
    • Prentice-Hall, New Jersey, Englewood Cliffs, M.A. Henson, D.E. Seborg (Eds.)
    • Pearson R.K., Ogunnaike B.A. Nonlinear process identification. Nonlinear process control 1997, Prentice-Hall, New Jersey, Englewood Cliffs. M.A. Henson, D.E. Seborg (Eds.).
    • (1997) Nonlinear process control
    • Pearson, R.K.1    Ogunnaike, B.A.2
  • 34
    • 0028401031 scopus 로고
    • Neurocontrol of nonlinear dynamic systems with Kalman filter trained recurrent neural networks
    • Puskorius G.V., Feldkamp L.A. Neurocontrol of nonlinear dynamic systems with Kalman filter trained recurrent neural networks. IEEE Transactions on Neural Networks 1994, 5(2):279-297.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 279-297
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 35
    • 0041802770 scopus 로고    scopus 로고
    • A survey of industrial model predictive control technology
    • Qin J.S., Badgwell T.A. A survey of industrial model predictive control technology. Control Engineering Practice 2003, 11(7):733-764.
    • (2003) Control Engineering Practice , vol.11 , Issue.7 , pp. 733-764
    • Qin, J.S.1    Badgwell, T.A.2
  • 36
    • 0037189833 scopus 로고    scopus 로고
    • Nonlinear model predictive control of an industrial four-stage evaporator system via simulation
    • Rangaiah G.P., Saha P., Tadé M.O. Nonlinear model predictive control of an industrial four-stage evaporator system via simulation. Chemical Engineering. Journal 2002, 87(3):285-299.
    • (2002) Chemical Engineering. Journal , vol.87 , Issue.3 , pp. 285-299
    • Rangaiah, G.P.1    Saha, P.2    Tadé, M.O.3
  • 37
    • 78349309016 scopus 로고
    • Learning internal representations by error propagation. In: Parallel Distributed Processing. Cambridge, MA: MIT Press.
    • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In: Parallel Distributed Processing. Cambridge, MA: MIT Press.
    • (1986)
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 38
    • 0034542235 scopus 로고    scopus 로고
    • Online-optimized feed switching in semi-batch reactors using semi-empirical dynamic models
    • Schenker B., Agarwal M. Online-optimized feed switching in semi-batch reactors using semi-empirical dynamic models. Control Engineering Practice 2000, 8:1393-1403.
    • (2000) Control Engineering Practice , vol.8 , pp. 1393-1403
    • Schenker, B.1    Agarwal, M.2
  • 39
    • 0032193049 scopus 로고    scopus 로고
    • State space nonlinear process modeling: Identification and uncertainty
    • Sentoni G.B., Biegler L.T., Guiver J.B., Zhao H. State space nonlinear process modeling: Identification and uncertainty. AIChE Journal 1998, 44(10):2229-2239.
    • (1998) AIChE Journal , vol.44 , Issue.10 , pp. 2229-2239
    • Sentoni, G.B.1    Biegler, L.T.2    Guiver, J.B.3    Zhao, H.4
  • 41
    • 0000993120 scopus 로고    scopus 로고
    • Artificial neural networks for nonlinear process identification
    • Prentice-Hall, New Jersey, Englewood Cliffs, M.A. Henson, D.E. Seborg (Eds.)
    • Su H.T., McAvoy T.J. Artificial neural networks for nonlinear process identification. Nonlinear process control 1997, Prentice-Hall, New Jersey, Englewood Cliffs. M.A. Henson, D.E. Seborg (Eds.).
    • (1997) Nonlinear process control
    • Su, H.T.1    McAvoy, T.J.2
  • 42
    • 0029252259 scopus 로고
    • Model predictive control of an industrial packed reactor using neural networks
    • Temeng K.O., Schenelle P.D., McAvoy T.J. Model predictive control of an industrial packed reactor using neural networks. Journal of Process Control 1995, 5(1):19-28.
    • (1995) Journal of Process Control , vol.5 , Issue.1 , pp. 19-28
    • Temeng, K.O.1    Schenelle, P.D.2    McAvoy, T.J.3
  • 44
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Werbos P.J. Backpropagation through time: What it does and how to do it. Proceedings of the IEEE 1990, 78(10):1550-1560.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 45
    • 0345356987 scopus 로고    scopus 로고
    • Implementation of neural network predictive control to a multivariable chemical reactor
    • Yu D.L., Gomm J.B. Implementation of neural network predictive control to a multivariable chemical reactor. Control Engineering Practice 2003, 11:1315-1323.
    • (2003) Control Engineering Practice , vol.11 , pp. 1315-1323
    • Yu, D.L.1    Gomm, J.B.2
  • 46
    • 0032144732 scopus 로고    scopus 로고
    • State-space neural network properties and applications
    • Zamarreno J.M., Vega P. State-space neural network properties and applications. Neural Networks 1998, 11:1099-1112.
    • (1998) Neural Networks , vol.11 , pp. 1099-1112
    • Zamarreno, J.M.1    Vega, P.2
  • 47
    • 78349306592 scopus 로고
    • Nonlinear predictive control based on Hammerstein models. In Proceedings: Process Systems Engineering
    • Zhu, X., & Seborg, D. E. (1994). Nonlinear predictive control based on Hammerstein models. In Proceedings: Process Systems Engineering (pp. 995-1000).
    • (1994) , pp. 995-1000
    • Zhu, X.1    Seborg, D.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.