-
1
-
-
0012769758
-
-
349
-
T. W. Campbell, H. Walker, G. H. Coppinger, Chem. Rev. 1952, 50, 279 - 349.
-
(1952)
Chem. Rev.
, vol.50
, pp. 279
-
-
Campbell, T.W.1
Walker, H.2
Coppinger, G.H.3
-
5
-
-
4243421005
-
-
2052
-
K. Dostál, Z. Žak, M. Ĉernik, Chem. Ber. 1971, 104, 2044 - 2052.
-
(1971)
Chem. Ber.
, vol.104
, pp. 2044
-
-
Dostál, K.1
Žak, Z.2
Ĉernik, M.3
-
8
-
-
0000023783
-
-
428
-
R. Boese, A. Haas, S. Herkt, M. Pryka, Chem. Ber. 1995, 128, 423 - 428.
-
(1995)
Chem. Ber.
, vol.128
, pp. 423
-
-
Boese, R.1
Haas, A.2
Herkt, S.3
Pryka, M.4
-
10
-
-
0000439264
-
-
2829
-
M. Minoura, T. Sagami, K. Akiba, C. Modrakowski, A. Sudau, K. Seppelt, S. Wallenhauer, Angew. Chem. 1996, 108, 2827 - 2829
-
(1996)
Angew. Chem.
, vol.108
, pp. 2827
-
-
Minoura, M.1
Sagami, T.2
Akiba, K.3
Modrakowski, C.4
Sudau, A.5
Seppelt, K.6
Wallenhauer, S.7
-
12
-
-
0033601094
-
-
10853
-
M. Minoura, T. Mukuda, T. Sagami, K. Akiba, J. Am. Chem. Soc. 1999, 121, 10852 - 10853
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 10852
-
-
Minoura, M.1
Mukuda, T.2
Sagami, T.3
Akiba, K.4
-
13
-
-
0009967483
-
-
2748
-
M. Miyasato, M. Minoura, K. Akiba, Angew. Chem. 2001, 113, 2746 - 2748
-
(2001)
Angew. Chem.
, vol.113
, pp. 2746
-
-
Miyasato, M.1
Minoura, M.2
Akiba, K.3
-
14
-
-
0035898422
-
-
2676
-
Angew. Chem. Int. Ed. 2001, 40, 2674 - 2676
-
(2001)
Angew. Chem. Int. Ed.
, vol.40
, pp. 2674
-
-
-
15
-
-
0035844922
-
-
2439
-
M. Minoura, T. Sagami, K. Akiba, Organometallics 2001, 20, 2437 - 2439
-
(2001)
Organometallics
, vol.20
, pp. 2437
-
-
Minoura, M.1
Sagami, T.2
Akiba, K.3
-
16
-
-
2942598035
-
-
2600
-
M. Miyasato, T. Sagami, M. Minoura, Y. Yamamoto, K. Akiba, Chem. Eur. J. 2004, 10, 2590 - 2600
-
(2004)
Chem. Eur. J.
, vol.10
, pp. 2590
-
-
Miyasato, M.1
Sagami, T.2
Minoura, M.3
Yamamoto, Y.4
Akiba, K.5
-
17
-
-
7444220091
-
-
14175
-
T. M. Klapötke, B. Krumm, K. Polborn, I. Schwab, J. Am. Chem. Soc. 2004, 126, 14166 - 14175.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 14166
-
-
Klapötke, T.M.1
Krumm, B.2
Polborn, K.3
Schwab, I.4
-
18
-
-
78349247098
-
-
10133
-
J. Beckmann, P. Finke, M. Hesse, B. Wettig, Angew. Chem. 2008, 120, 10130 - 10133
-
(2008)
Angew. Chem.
, vol.120
, pp. 10130
-
-
Beckmann, J.1
Finke, P.2
Hesse, M.3
Wettig, B.4
-
19
-
-
57549106063
-
-
9984
-
Angew. Chem. Int. Ed. 2008, 47, 9982 - 9984.
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 9982
-
-
-
20
-
-
78349247861
-
-
note
-
2=0.0912 (all data). GooF=0.877, 298 parameters. CCDC 782648 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
-
-
-
-
21
-
-
78349249746
-
-
note
-
2=0.1280 (all data). GooF=1.055, 352 parameters. CCDC 782649 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via.
-
-
-
-
22
-
-
0042575721
-
-
3261
-
J. Beckmann, D. Dakternieks, A. Duthie, F. Ribot, M. Schürmann, N. A. Lewcenko, Organometallics 2003, 22, 3257 - 3261.
-
(2003)
Organometallics
, vol.22
, pp. 3257
-
-
Beckmann, J.1
Dakternieks, D.2
Duthie, A.3
Ribot, F.4
Schürmann, M.5
Lewcenko, N.A.6
-
24
-
-
84858623811
-
-
3 structural units and thus, the glass transition temperature and non-linear optical response
-
3 structural units and thus, the glass transition temperature and non-linear optical response
-
-
-
-
28
-
-
0034272671
-
-
8
-
J. C. McLaughlin, S. L. Tagg, J. W. Zwanziger, D. R. Haeffner, S. D. Shastri, J. Non-Cryst. Solids 2000, 274, 1 - 8
-
(2000)
J. Non-Cryst. Solids
, vol.274
, pp. 1
-
-
McLaughlin, J.C.1
Tagg, S.L.2
Zwanziger, J.W.3
Haeffner, D.R.4
Shastri, S.D.5
-
29
-
-
0035124794
-
-
75
-
J. C. McLaughlin, S. L. Tagg, J. W. Zwanziger, J. Phys. Chem. B 2001, 105, 67 - 75.
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 67
-
-
McLaughlin, J.C.1
Tagg, S.L.2
Zwanziger, J.W.3
-
31
-
-
78349285912
-
-
Calculations were performed both at the DFT/B3PW91 as well as at the MP2 level of theory. For tellurium an effective core potential with a cc-pVTZ basis set was applied, the split-valence 6-311+G(2df,p) basis set for all other atoms was used. Stationary points were characterized as true minima by frequency calculations. See Supporting Information for details
-
Calculations were performed both at the DFT/B3PW91 as well as at the MP2 level of theory. For tellurium an effective core potential with a cc-pVTZ basis set was applied, the split-valence 6-311+G(2df,p) basis set for all other atoms was used. Stationary points were characterized as true minima by frequency calculations. See Supporting Information for details.
-
-
-
|