-
1
-
-
0031245397
-
An improved technique for permittivity measurements using a coaxial probe
-
Blackham DV, Pollard RD. 1997. An improved technique for permittivity measurements using a coaxial probe. IEEE Trans Instrum Measur 46(5): 1093-1099.
-
(1997)
IEEE Trans Instrum Measur
, vol.46
, Issue.5
, pp. 1093-1099
-
-
Blackham, D.V.1
Pollard, R.D.2
-
2
-
-
0034902704
-
Reduction of the contribution of electrode polarization effects in the radiowave dielectric measurements of highly conductive biological cell suspensions
-
Bordi F, Cametti C, Gili T. 2001. Reduction of the contribution of electrode polarization effects in the radiowave dielectric measurements of highly conductive biological cell suspensions. Bioelectrochemistry 54: 53-61.
-
(2001)
Bioelectrochemistry
, vol.54
, pp. 53-61
-
-
Bordi, F.1
Cametti, C.2
Gili, T.3
-
3
-
-
33746845747
-
Dielectric scaling in polyelectrolyte solutions with different solvent quality in the dilute concentration regime
-
Bordi F, Cametti C, Sennato S, Zuzzi S, Dou S, Colby RH. 2006. Dielectric scaling in polyelectrolyte solutions with different solvent quality in the dilute concentration regime. Phys Chem Chem Phys 8: 3653-3658.
-
(2006)
Phys Chem Chem Phys
, vol.8
, pp. 3653-3658
-
-
Bordi, F.1
Cametti, C.2
Sennato, S.3
Zuzzi, S.4
Dou, S.5
Colby, R.H.6
-
4
-
-
0037014789
-
Radiowave dielectric investigation of boron compounds distribution on cultured tumour cells: Relevance to boron neutron capture therapy
-
Capuani S, Gili T, Cametti C, Maraviglia B, Colasanti M, Muolo M, Venturini G. 2002. Radiowave dielectric investigation of boron compounds distribution on cultured tumour cells: Relevance to boron neutron capture therapy. Chemical Physics Letters 360: 79-84.
-
(2002)
Chemical Physics Letters
, vol.360
, pp. 79-84
-
-
Capuani, S.1
Gili, T.2
Cametti, C.3
Maraviglia, B.4
Colasanti, M.5
Muolo, M.6
Venturini, G.7
-
5
-
-
47549117709
-
Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles
-
Cardinal J, Klune JR, Chory E, Jeyabalan G, Kanzius JS, Nalesnik M, Geller DA. 2008. Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles. Surgery 144(2): 125-132.
-
(2008)
Surgery
, vol.144
, Issue.2
, pp. 125-132
-
-
Cardinal, J.1
Klune, J.R.2
Chory, E.3
Jeyabalan, G.4
Kanzius, J.S.5
Nalesnik, M.6
Geller, D.A.7
-
6
-
-
33748565282
-
Dispersion and absorption in dielectrics: I. Alternating current characteristics
-
Cole KS, Cole RH. 1941. Dispersion and absorption in dielectrics: I. Alternating current characteristics. J Chem Phys 9: 341-351.
-
(1941)
J Chem Phys
, vol.9
, pp. 341-351
-
-
Cole, K.S.1
Cole, R.H.2
-
7
-
-
58649104170
-
Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles
-
Curley SA, Cherukuri P, Briggs K, Patra CR, Upton M, Dolson E, Mukherjee P. 2008. Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles. J Exp Ther Oncol 7(4): 313-326.
-
(2008)
J Exp Ther Oncol
, vol.7
, Issue.4
, pp. 313-326
-
-
Curley, S.A.1
Cherukuri, P.2
Briggs, K.3
Patra, C.R.4
Upton, M.5
Dolson, E.6
Mukherjee, P.7
-
8
-
-
33846886740
-
Dielectric measurement: Error analysis and assessment of uncertainty
-
Gabriel C, Peyman A. 2006. Dielectric measurement: Error analysis and assessment of uncertainty. Phys Med Biol 51: 6003-6046.
-
(2006)
Phys Med Biol
, vol.51
, pp. 6003-6046
-
-
Gabriel, C.1
Peyman, A.2
-
10
-
-
37049031524
-
Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field
-
Gannon CJ, Cherukuri P, Yakobson BI, Cognet L, Kanzius JS, Kittrell C, Weisman RB, Pasquali M, Schmidt HK, Smalley RE, Curley SA. 2007. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110(12): 2654-2665.
-
(2007)
Cancer
, vol.110
, Issue.12
, pp. 2654-2665
-
-
Gannon, C.J.1
Cherukuri, P.2
Yakobson, B.I.3
Cognet, L.4
Kanzius, J.S.5
Kittrell, C.6
Weisman, R.B.7
Pasquali, M.8
Schmidt, H.K.9
Smalley, R.E.10
Curley, S.A.11
-
11
-
-
41549083324
-
Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells
-
Gannon CJ, Patra CR, Bhattacharya R, Mukherjee P, Curley SA. 2008. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J Nanobiotechnol 6: 2.
-
(2008)
J Nanobiotechnol
, vol.6
, pp. 2
-
-
Gannon, C.J.1
Patra, C.R.2
Bhattacharya, R.3
Mukherjee, P.4
Curley, S.A.5
-
12
-
-
46749105483
-
Effective electrical conductivity of functional single-wall carbon nanotubes in aqueous fluids
-
Glover B, Whites KW, Hong H, Mukherjee A, Billups WE. 2008. Effective electrical conductivity of functional single-wall carbon nanotubes in aqueous fluids. Synth Metals 158: 506-508.
-
(2008)
Synth Metals
, vol.158
, pp. 506-508
-
-
Glover, B.1
Whites, K.W.2
Hong, H.3
Mukherjee, A.4
Billups, W.E.5
-
13
-
-
0001191182
-
The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites
-
Grimes C, Mungle C, Kouzoudis D, Fang S, Eklund P. 2000. The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chemical Physics Letters 319: 460-464.
-
(2000)
Chemical Physics Letters
, vol.319
, pp. 460-464
-
-
Grimes, C.1
Mungle, C.2
Kouzoudis, D.3
Fang, S.4
Eklund, P.5
-
14
-
-
85053746644
-
Electromagnetic analysis and design in magnetic resonance imaging
-
Boca Raton: CRC Press.
-
Jin J. 1999. Electromagnetic analysis and design in magnetic resonance imaging. Boca Raton: CRC Press.
-
(1999)
-
-
Jin, J.1
-
15
-
-
15544362536
-
Permittivity measurements up to 30 GHz using a micromachined probe
-
Kim J-M, Oh DH, Pak J-H, Cho J-W, Kwon Y, Cheon C, Kim Y-K. 2005. Permittivity measurements up to 30 GHz using a micromachined probe. J Micromech Microeng 15: 543-550.
-
(2005)
J Micromech Microeng
, vol.15
, pp. 543-550
-
-
Kim, J.1
Oh, D.H.2
Pak, J.3
Cho, J.4
Kwon, Y.5
Cheon, C.6
Kim, Y.7
-
16
-
-
33747074927
-
Stability of the aqueous suspensions of nanotubes in the presence of nonionic surfactant
-
Lisunova MO, Lebovka NI, Melezhyk OV, Boiko YP. 2006. Stability of the aqueous suspensions of nanotubes in the presence of nonionic surfactant. J Colloid Interf Sci 299(2): 740-746.
-
(2006)
J Colloid Interf Sci
, vol.299
, Issue.2
, pp. 740-746
-
-
Lisunova, M.O.1
Lebovka, N.I.2
Melezhyk, O.V.3
Boiko, Y.P.4
-
17
-
-
4544240603
-
A study on the electrical conductivity of multi-walled carbon nanotube aqueous solution
-
Liu L, Yang Y, Zhang Y. 2004. A study on the electrical conductivity of multi-walled carbon nanotube aqueous solution. Physica E 24(3-4): 343-348.
-
(2004)
Physica E
, vol.24
, Issue.3-4
, pp. 343-348
-
-
Liu, L.1
Yang, Y.2
Zhang, Y.3
-
18
-
-
31144471551
-
Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen peroxide
-
Miyata Y, Maniwa Y, Kataura H. 2006. Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen peroxide. J Phys Chem B 110(1): 25-29.
-
(2006)
J Phys Chem B
, vol.110
, Issue.1
, pp. 25-29
-
-
Miyata, Y.1
Maniwa, Y.2
Kataura, H.3
-
19
-
-
42449162016
-
Highly stabilized conductivity of metallic single wall carbon nanotube thin films
-
Miyata Y, Yanagi K, Maniwa Y, Kataura H. 2008. Highly stabilized conductivity of metallic single wall carbon nanotube thin films. J Phys Chem C 112: 3591-3596.
-
(2008)
J Phys Chem C
, vol.112
, pp. 3591-3596
-
-
Miyata, Y.1
Yanagi, K.2
Maniwa, Y.3
Kataura, H.4
-
20
-
-
65549110797
-
Size-dependent joule heating of gold nanoparticles using capacitively coupled radiofrequency fields
-
Moran CH, Wainerdi SM, Cherukuri TK, Kittrell C, Wiley BJ, Nicholas NW, Curley SA, Kanzius JS, Cherukuri P. 2009. Size-dependent joule heating of gold nanoparticles using capacitively coupled radiofrequency fields. Nano Res 2: 400-405.
-
(2009)
Nano Res
, vol.2
, pp. 400-405
-
-
Moran, C.H.1
Wainerdi, S.M.2
Cherukuri, T.K.3
Kittrell, C.4
Wiley, B.J.5
Nicholas, N.W.6
Curley, S.A.7
Kanzius, J.S.8
Cherukuri, P.9
-
21
-
-
56149093872
-
Chiral-angle distribution for separated single-walled carbon nanotubes
-
Sato Y, Yanagi K, Miyata Y, Suenaga K, Kataura H, Iijima S. 2008. Chiral-angle distribution for separated single-walled carbon nanotubes. Nano Lett 8(10): 3151-3154.
-
(2008)
Nano Lett
, vol.8
, Issue.10
, pp. 3151-3154
-
-
Sato, Y.1
Yanagi, K.2
Miyata, Y.3
Suenaga, K.4
Kataura, H.5
Iijima, S.6
-
22
-
-
65249086967
-
Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes
-
Tanaka T, Jin H, Miyata Y, Fujii S, Suga H, Naitoh Y, Minari T, Miyadera T, Tsukagoshi K, Kataura H. 2009a. Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett 9(4): 1497-1500.
-
(2009)
Nano Lett
, vol.9
, Issue.4
, pp. 1497-1500
-
-
Tanaka, T.1
Jin, H.2
Miyata, Y.3
Fujii, S.4
Suga, H.5
Naitoh, Y.6
Minari, T.7
Miyadera, T.8
Tsukagoshi, K.9
Kataura, H.10
-
23
-
-
73149112425
-
Continuous separation of metallic and semiconducting carbon nanotubes using agarose gel
-
Tanaka T, Urabe Y, Nishide D, Kataura H. 2009b. Continuous separation of metallic and semiconducting carbon nanotubes using agarose gel. Appl Phys Express 2(125002): 1-3.
-
(2009)
Appl Phys Express
, vol.2
, pp. 1-3
-
-
Tanaka, T.1
Urabe, Y.2
Nishide, D.3
Kataura, H.4
-
24
-
-
33748461557
-
Interaction of radio frequency electromagnetic fields and passive metallic implants-A brief review
-
Virtanen H, Keshvari J, Lappalainen R. 2006. Interaction of radio frequency electromagnetic fields and passive metallic implants-A brief review. Bioelectromagnetics 27(6): 431-439.
-
(2006)
Bioelectromagnetics
, vol.27
, Issue.6
, pp. 431-439
-
-
Virtanen, H.1
Keshvari, J.2
Lappalainen, R.3
-
25
-
-
57949097110
-
Separations of metallic and semiconducting carbon nanotubes by using sucrose as a gradient medium
-
Yanagi K, Iitsuka T, Fujii S, Kataura H. 2008. Separations of metallic and semiconducting carbon nanotubes by using sucrose as a gradient medium. J Phys Chem C 112: 18889-18894.
-
(2008)
J Phys Chem C
, vol.112
, pp. 18889-18894
-
-
Yanagi, K.1
Iitsuka, T.2
Fujii, S.3
Kataura, H.4
|