메뉴 건너뛰기




Volumn 226, Issue 2, 2011, Pages 2020-2039

On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion

Author keywords

Fractional diffusion; Hamilton Jacobi equation

Indexed keywords


EID: 78149495482     PISSN: 00018708     EISSN: 10902082     Source Type: Journal    
DOI: 10.1016/j.aim.2010.09.007     Document Type: Article
Times cited : (94)

References (16)
  • 1
    • 43049183444 scopus 로고    scopus 로고
    • Second-order elliptic integro-differential equations: viscosity solutions' theory revisited
    • Barles G., Imbert C. Second-order elliptic integro-differential equations: viscosity solutions' theory revisited. Ann. Inst. H. Poincare Anal. Non Lineaire 2008, 25(3):567-585.
    • (2008) Ann. Inst. H. Poincare Anal. Non Lineaire , vol.25 , Issue.3 , pp. 567-585
    • Barles, G.1    Imbert, C.2
  • 3
    • 68049121967 scopus 로고    scopus 로고
    • Regularity theory for fully nonlinear integro-differential equations
    • Caffarelli L., Silvestre L. Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 2009, 62(5):597-638.
    • (2009) Comm. Pure Appl. Math. , vol.62 , Issue.5 , pp. 597-638
    • Caffarelli, L.1    Silvestre, L.2
  • 4
    • 77950869887 scopus 로고    scopus 로고
    • Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation
    • Caffarelli L., Vasseur A. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. of Math. 2010, 171(3):1903-1930.
    • (2010) Ann. of Math. , vol.171 , Issue.3 , pp. 1903-1930
    • Caffarelli, L.1    Vasseur, A.2
  • 5
    • 77953301495 scopus 로고    scopus 로고
    • Eventual regularization of the slightly supercritical fractional Burgers equation
    • Chan C.H., Czubak M., Silvestre L. Eventual regularization of the slightly supercritical fractional Burgers equation. Discrete Contin. Dyn. Syst. Ser. A 2010, 27(2):847-861.
    • (2010) Discrete Contin. Dyn. Syst. Ser. A , vol.27 , Issue.2 , pp. 847-861
    • Chan, C.H.1    Czubak, M.2    Silvestre, L.3
  • 6
    • 84967708673 scopus 로고
    • User's guide to viscosity solutions of second order partial differential equations
    • Crandall M., Ishii H., Lions P.-L. User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 1992, 27:1-67.
    • (1992) Bull. Amer. Math. Soc. (N.S.) , vol.27 , pp. 1-67
    • Crandall, M.1    Ishii, H.2    Lions, P.-L.3
  • 7
    • 33747469213 scopus 로고    scopus 로고
    • Fractal first-order partial differential equations
    • Droniou J., Imbert C. Fractal first-order partial differential equations. Arch. Ration. Mech. Anal. 2006, 182(2):299-331.
    • (2006) Arch. Ration. Mech. Anal. , vol.182 , Issue.2 , pp. 299-331
    • Droniou, J.1    Imbert, C.2
  • 8
    • 0141648426 scopus 로고    scopus 로고
    • Global solution and smoothing effect for a non-local regularization of a hyperbolic equation
    • Droniou J., Gallouët T., Vovelle J. Global solution and smoothing effect for a non-local regularization of a hyperbolic equation. J. Evol. Equ. 2003, 3(3):499-521.
    • (2003) J. Evol. Equ. , vol.3 , Issue.3 , pp. 499-521
    • Droniou, J.1    Gallouët, T.2    Vovelle, J.3
  • 9
    • 14244266989 scopus 로고    scopus 로고
    • A non-local regularization of first order Hamilton-Jacobi equations
    • Imbert C. A non-local regularization of first order Hamilton-Jacobi equations. J. Differential Equations 2005, 211(1):218-246.
    • (2005) J. Differential Equations , vol.211 , Issue.1 , pp. 218-246
    • Imbert, C.1
  • 10
    • 33646945027 scopus 로고
    • The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations
    • Jensen R. The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch. Ration. Mech. Anal. 1988, 101(1):1-27.
    • (1988) Arch. Ration. Mech. Anal. , vol.101 , Issue.1 , pp. 1-27
    • Jensen, R.1
  • 11
    • 77951154836 scopus 로고    scopus 로고
    • Fractal Hamilton-Jacobi-KPZ equations
    • Karch G., Woyczynski W.A. Fractal Hamilton-Jacobi-KPZ equations. Trans. Amer. Math. Soc. 2008, 360(5):2423.
    • (2008) Trans. Amer. Math. Soc. , vol.360 , Issue.5 , pp. 2423
    • Karch, G.1    Woyczynski, W.A.2
  • 12
    • 77949288432 scopus 로고    scopus 로고
    • Variation on a theme of Caffarelli and Vasseur
    • Kiselev A., Nazarov F. Variation on a theme of Caffarelli and Vasseur. J. Math. Sci. 2010, 166(1):31-39.
    • (2010) J. Math. Sci. , vol.166 , Issue.1 , pp. 31-39
    • Kiselev, A.1    Nazarov, F.2
  • 13
    • 55349138425 scopus 로고    scopus 로고
    • Blow up and regularity for fractal Burgers equation
    • Kiselev Alexander, Nazarov Fedor, Shterenberg Roman Blow up and regularity for fractal Burgers equation. Dyn. Partial Differ. Equ. 2008, 5(3):211-240.
    • (2008) Dyn. Partial Differ. Equ. , vol.5 , Issue.3 , pp. 211-240
    • Kiselev, A.1    Nazarov, F.2    Shterenberg, R.3
  • 15
    • 0040365115 scopus 로고
    • Regularizing effects for first-order Hamilton-Jacobi equations
    • Lions P.-L. Regularizing effects for first-order Hamilton-Jacobi equations. Appl. Anal. 1985, 20(3-4):283-307.
    • (1985) Appl. Anal. , vol.20 , Issue.3-4 , pp. 283-307
    • Lions, P.-L.1
  • 16
    • 33747032243 scopus 로고    scopus 로고
    • Hölder estimates for solutions of integro-differential equations like the fractional Laplace
    • Silvestre L. Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 2006, 55(3):1155-1174.
    • (2006) Indiana Univ. Math. J. , vol.55 , Issue.3 , pp. 1155-1174
    • Silvestre, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.