메뉴 건너뛰기




Volumn 84, Issue , 2007, Pages

A discriminant analysis for undersampled data

Author keywords

Dimensionality Reduction; Linear Discriminant Analysis; Pattern Recognition

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; DISCRIMINANT ANALYSIS; PATTERN RECOGNITION;

EID: 78149482093     PISSN: 14451336     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1)

References (25)
  • 6
    • 13444283482 scopus 로고    scopus 로고
    • Learning an image manifold for retrieval
    • New York
    • He, X., Ma, W. & Zhang, H. (2004), Learning an image manifold for retrieval, in 'ACM conference on Multimedia 2004', New York, pp. 17-23.
    • (2004) ACM conference on Multimedia 2004 , pp. 17-23
    • He, X.1    Ma, W.2    Zhang, H.3
  • 7
    • 13444286179 scopus 로고    scopus 로고
    • Locality preserving projections
    • S. Thrun, L. Saul & B. Schölkopf, eds, MIT Press, Cambridge, MA
    • He, X. & Niyogi, P. (2004), Locality preserving projections, in S. Thrun, L. Saul & B. Schölkopf, eds, 'Advances in Neural Information Processing Systems 16', MIT Press, Cambridge, MA.
    • (2004) Advances in Neural Information Processing Systems 16
    • He, X.1    Niyogi, P.2
  • 8
    • 0016994437 scopus 로고
    • Application of principal component analysis to multikey searching
    • Lee, R. C. T. & Chin, Y. H. (1976), 'Application of principal component analysis to multikey searching', IEEE Transactions on Software Engineering 2(3), 185-193.
    • (1976) IEEE Transactions on Software Engineering , vol.2 , Issue.3 , pp. 185-193
    • Lee, R.C.T.1    Chin, Y.H.2
  • 11
    • 33646408401 scopus 로고    scopus 로고
    • Fast nonnegative dimensionality reduction for protein fold recognition.
    • Okun, O., Priisalu, H. & Alves, A. (2005), Fast nonnegative dimensionality reduction for protein fold recognition., in 'ECML', pp. 665-672.
    • (2005) ECML , pp. 665-672
    • Okun, O.1    Priisalu, H.2    Alves, A.3
  • 12
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: recommendations for practitioners
    • Raudys, S. & Jain, A. (1991), 'Small sample size effects in statistical pattern recognition: recommendations for practitioners', IEEE Trans Pattern Analysis and Machine Intelligence 31, 252-264.
    • (1991) IEEE Trans Pattern Analysis and Machine Intelligence , vol.31 , pp. 252-264
    • Raudys, S.1    Jain, A.2
  • 14
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S. T. & Saul, L. K. (2000), 'Nonlinear dimensionality reduction by locally linear embedding', Science 290(22), 2323-2326.
    • (2000) Science , vol.290 , Issue.22 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 16
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J. B., de Silva, V. & Langford, J. C. (2000), 'A global geometric framework for nonlinear dimensionality reduction', Science 290(22), 2319-2323.
    • (2000) Science , vol.290 , Issue.22 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 23
    • 14244262619 scopus 로고    scopus 로고
    • Weighted principal component analysis and its applications to improve FDC performance
    • Yue, H. H. & Tomoyasu, M. (2004), Weighted principal component analysis and its applications to improve FDC performance, in 'Proceedings of 43rd IEEE Conference on CDC', Vol. 4, pp. 4262-4267.
    • (2004) Proceedings of 43rd IEEE Conference on CDC , vol.4 , pp. 4262-4267
    • Yue, H.H.1    Tomoyasu, M.2
  • 25
    • 33846297970 scopus 로고    scopus 로고
    • Improved discriminate analysis for high-dimensional data and ts application to face recognition
    • Zhuang, X. S. & Dai, D. Q. (2007), 'Improved discriminate analysis for high-dimensional data and ts application to face recognition', Pattern Recog- nition 40(5), 1570-1578.
    • (2007) Pattern Recog- nition , vol.40 , Issue.5 , pp. 1570-1578
    • Zhuang, X.S.1    Dai, D.Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.