메뉴 건너뛰기




Volumn , Issue , 2006, Pages 1205-1210

Speedup clustering with hierarchical ranking

Author keywords

[No Author keywords available]

Indexed keywords

DATA OBJECTS; REAL-LIFE DATA;

EID: 78149285136     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2006.151     Document Type: Conference Paper
Times cited : (4)

References (15)
  • 1
    • 0347172110 scopus 로고    scopus 로고
    • M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering Points To Identify the Clustering Structure. SIGMOD'99, pp. 49-60.
    • M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering Points To Identify the Clustering Structure. SIGMOD'99, pp. 49-60.
  • 2
    • 29844444238 scopus 로고    scopus 로고
    • V. Athitsos, M. Hadjieleftheriou, G. Kollios, and S. Sclaroff. Query-sensitive embeddings. SIGMOD'05, pages 706-717.
    • V. Athitsos, M. Hadjieleftheriou, G. Kollios, and S. Sclaroff. Query-sensitive embeddings. SIGMOD'05, pages 706-717.
  • 3
    • 0034819223 scopus 로고    scopus 로고
    • M. Breunig, H.-P. Kriegel, P. Kröger, and J. Sander. Data Bubbles: Quality Preserving Performance Boosting for Hierarchical Clustering. SIGMOD'01, pp. 79-90.
    • M. Breunig, H.-P. Kriegel, P. Kröger, and J. Sander. Data Bubbles: Quality Preserving Performance Boosting for Hierarchical Clustering. SIGMOD'01, pp. 79-90.
  • 4
    • 1942485278 scopus 로고    scopus 로고
    • C. Elkan. Using the Triangle Inequality to Accelerate k-Means. ICML'03, pp. 147-153.
    • C. Elkan. Using the Triangle Inequality to Accelerate k-Means. ICML'03, pp. 147-153.
  • 6
    • 84878105024 scopus 로고    scopus 로고
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. KDD'96, pp. 226-231.
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. KDD'96, pp. 226-231.
  • 7
    • 0041664272 scopus 로고    scopus 로고
    • Index-driven similarity search in metric spaces
    • G. R. Hjaltason and H. Samet. Index-driven similarity search in metric spaces. TODS, 28(4):517-580, 2003.
    • (2003) TODS , vol.28 , Issue.4 , pp. 517-580
    • Hjaltason, G.R.1    Samet, H.2
  • 9
    • 84878028176 scopus 로고    scopus 로고
    • B. Larsen and C. Aone. Fast and Effective Text Mining Using Linear-time Document Clustering. KDD'99, 16-22.
    • B. Larsen and C. Aone. Fast and Effective Text Mining Using Linear-time Document Clustering. KDD'99, 16-22.
  • 10
    • 84993661659 scopus 로고    scopus 로고
    • P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for Similarity Search in Metric Spaces. VLDB'97, pp. 426-435.
    • P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for Similarity Search in Metric Spaces. VLDB'97, pp. 426-435.
  • 12
    • 0034072450 scopus 로고    scopus 로고
    • DNA binding sites: Representation and discovery
    • Jan;
    • G.D. Stormo. DNA binding sites: representation and discovery. Bioinformatics. 2000 Jan;16(1):16-23
    • (2000) Bioinformatics , vol.16 , Issue.1 , pp. 16-23
    • Stormo, G.D.1
  • 13
    • 0022858293 scopus 로고
    • An algorithm for finding nearest neighbours in (approximately) constant average time
    • E. Vidal. An algorithm for finding nearest neighbours in (approximately) constant average time. Pattern Recogn. Lett., 4(3):145-157, 1986.
    • (1986) Pattern Recogn. Lett , vol.4 , Issue.3 , pp. 145-157
    • Vidal, E.1
  • 14
    • 0030157145 scopus 로고    scopus 로고
    • T. Zhang, R. Ramakrishnan, Linvy M.: BIRCH: An Efficient Data Clustering Method for Very Large Databases. SIGMOD'96, pp. 103-114.
    • T. Zhang, R. Ramakrishnan, Linvy M.: BIRCH: An Efficient Data Clustering Method for Very Large Databases. SIGMOD'96, pp. 103-114.
  • 15
    • 85012191696 scopus 로고    scopus 로고
    • J. Zhou and J. Sander. Data bubbles for non-vector data: Speeding-up hierarchical clustering in arbitrary metric spaces. VLDB'03, pp 452-463.
    • J. Zhou and J. Sander. Data bubbles for non-vector data: Speeding-up hierarchical clustering in arbitrary metric spaces. VLDB'03, pp 452-463.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.