메뉴 건너뛰기




Volumn 53, Issue 9, 2010, Pages 1401-1414

Streaming covariance selection with applications to adaptive querying in sensor networks

Author keywords

ALADDIN special issue; covariance selection; sensor networks

Indexed keywords

ADAPTIVE IMPLEMENTATION; ALADDIN SPECIAL ISSUE; BATTERY CONSUMPTION; COMPUTATIONALLY EFFICIENT; CORRELATION STRUCTURE; COVARIANCE SELECTION; DATA ANALYSIS; EDGE-SETS; ENVIRONMENTAL MONITORING; GRAPHICAL MODEL; GRAPHICAL REPRESENTATIONS; INFORMATION MINING; SHORT-TERM FORECASTING; WEATHER DATA; WIND DIRECTIONS;

EID: 78149254128     PISSN: 00104620     EISSN: 14602067     Source Type: Journal    
DOI: 10.1093/comjnl/bxp123     Document Type: Article
Times cited : (2)

References (46)
  • 3
    • 33847110316 scopus 로고    scopus 로고
    • A prediction error-based hypothesis testing method for sensor data acquisition
    • DOI 10.1145/1218556.1218560
    • Arici, T., Akgun, T. and Altunbasak, Y. (2006) A prediction errorbased hypothesis testing method for sensor data acquisition. ACM Trans. Sens. Netw., 2, 529-556. (Pubitemid 46278641)
    • (2006) ACM Transactions on Sensor Networks , vol.2 , Issue.4 , pp. 529-556
    • Arici, T.1    Akgun, T.2    Altunbasak, Y.3
  • 4
    • 43249129974 scopus 로고    scopus 로고
    • Bandwidth-constrained queries in sensor networks
    • Deligiannakis, A., Kotidis, Y. and Roussopoulos, N. (2008) Bandwidth-constrained queries in sensor networks. VLDB J., 7, 443-467.
    • (2008) VLDB J. , vol.7 , pp. 443-467
    • Deligiannakis, A.1    Kotidis, Y.2    Roussopoulos, N.3
  • 8
    • 36349004317 scopus 로고    scopus 로고
    • Utilizing correlations to compress time-series in traffic monitoring sensor networks
    • DOI 10.1109/WCNC.2007.462, 4204638, 2007 IEEE Wireless Communications and Networking Conference, WCNC 2007
    • Guitton, A., Skordylis, A. and Trigoni, N. (2007) Correlation-Based Data Dissemination in Traffic Monitoring Sensor Networks. Technical Report, Birkbeck College, University of London. (Pubitemid 350139812)
    • (2007) IEEE Wireless Communications and Networking Conference, WCNC , pp. 2481-2485
    • Guitton, A.1    Skordylis, A.2    Trigoni, N.3
  • 9
    • 33750343721 scopus 로고    scopus 로고
    • A statistics-based sensor selection scheme for continuous probabilistic queries in sensor networks
    • DOI 10.1007/s11241-006-9000-3
    • Han, S., Chan, E., Cheng, R. and Lam, K. (2007) A statisticsbased sensor selection scheme for continuous probabilistic queries in sensor networks. Real-Time Syst., 35, 33-58. (Pubitemid 44627801)
    • (2007) Real-Time Systems , vol.35 , Issue.1 , pp. 33-58
    • Han, S.1    Chan, E.2    Cheng, R.3    Lam, K.-Y.4
  • 10
    • 33750708622 scopus 로고    scopus 로고
    • An adaptive strategy for quality-based data reduction in wireless sensor networks
    • Chicago, USA
    • Santini, S. and Römer, K. (2006) An Adaptive Strategy for Quality-Based Data Reduction in Wireless Sensor Networks. Proc. 3rd Int. Conf. Networked Sensing Systems (INSS'06), Chicago, USA, pp. 29-36.
    • (2006) Proc. 3rd Int. Conf. Networked Sensing Systems (INSS'06) , pp. 29-36
    • Santini, S.1    Römer, K.2
  • 11
    • 34547920743 scopus 로고    scopus 로고
    • Adaptive model selection for time series prediction in wireless sensor networks
    • DOI 10.1016/j.sigpro.2007.05.015, PII S0165168407001879
    • Yann-Ael, L., Santini, S. and Bontempi, G. (2007) Adaptive model selection for time series prediction in wireless sensor networks. Signal Process., 87, 3010-3020. (Pubitemid 47259183)
    • (2007) Signal Processing , vol.87 , Issue.12 , pp. 3010-3020
    • Le Borgne, Y.-A.1    Santini, S.2    Bontempi, G.3
  • 13
    • 0002583992 scopus 로고
    • Selection of variables in multiple regression. Part I: A review and evaluation
    • Thompson, M. (1978) Selection of variables in multiple regression. Part I: a review and evaluation. Int. Statist. Rev., 46, 1-19.
    • (1978) Int. Statist. Rev. , vol.46 , pp. 1-19
    • Thompson, M.1
  • 14
    • 0000628403 scopus 로고
    • Selection of variables in multiple regression. Part II: Chosen procedures, computations and examples
    • Thompson, M. (1978) Selection of variables in multiple regression. Part II: chosen procedures, computations and examples. Int. Statist. Rev., 46, 129-146.
    • (1978) Int. Statist. Rev. , vol.46 , pp. 129-146
    • Thompson, M.1
  • 15
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • DOI 10.1093/biomet/asm018
    • Yuan, M. and Lin, Y. (2007) Model selection and estimation in the Gaussian graphical model. Biometrika, 94, 19. (Pubitemid 46410725)
    • (2007) Biometrika , vol.94 , Issue.1 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 16
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • DOI 10.1214/009053606000000281
    • Meinshausen, N. and Buhlmann, P. (2006) High dimensional graphs and variable selection with the Lasso. Ann. Statist., 34, 1436-1462. (Pubitemid 44231168)
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 17
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani, R. (1996) Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Ser. B, 58, 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 23
    • 56749155084 scopus 로고    scopus 로고
    • Deciding what to observe next: Adaptive variable selection for regression in multivariate data streams
    • Fortaleza, Brazil
    • Anagnostopoulos, C., Adams, N. and Hand, D. (2008) Deciding What to Observe Next: Adaptive Variable Selection for Regression in Multivariate Data Streams. Proc. ACM Symp. Applied Computing, Fortaleza, Brazil, Vol. 2, pp. 961-965.
    • (2008) Proc. ACM Symp. Applied Computing , vol.2 , pp. 961-965
    • Anagnostopoulos, C.1    Adams, N.2    Hand, D.3
  • 24
    • 50149088455 scopus 로고    scopus 로고
    • Simulating dynamic covariance structures for testing the adaptive behavior of variable selection algorithms
    • Cambridge, UK
    • Anagnostopoulos, C. and Adams, N. (2008) Simulating Dynamic Covariance Structures for Testing the Adaptive Behavior of Variable Selection Algorithms. Proc. 10th Int. Conf. Computer Modelling and Simulation, Cambridge, UK, pp. 52-57.
    • (2008) Proc. 10th Int. Conf. Computer Modelling and Simulation , pp. 52-57
    • Anagnostopoulos, C.1    Adams, N.2
  • 28
    • 0001038826 scopus 로고
    • Covariance selection
    • Dempster, A. (1972) Covariance selection. Biometrics, 28, 157-175.
    • (1972) Biometrics , vol.28 , pp. 157-175
    • Dempster, A.1
  • 30
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • Zhao, P. and Yu, B. (2006) On model selection consistency of Lasso. J. Mach. Learn. Res., 7, 2541-2563. (Pubitemid 44866738)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 31
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • DOI 10.1093/biostatistics/kxm045
    • Friedman, J., Hastie, T. and Tibshirani, R. (2009) Sparse inverse covariance estimation with the graphical Lasso. Biostatistics, 9, 432-441. (Pubitemid 351882084)
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 32
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • Banerjee, O., El Ghaoui, L. and d'Aspremont, A. (2008) Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res., 9, 485-516. (Pubitemid 351469014)
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    D'Aspremont, A.3
  • 33
    • 34548536008 scopus 로고    scopus 로고
    • On the "degrees of freedom" of the Lasso
    • Zou, H., Hastie, T. and Tibshirani, R. (2007) On the "degrees of freedom" of the Lasso. Ann. Statist., 35, 2173-2192.
    • (2007) Ann. Statist. , vol.35 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3
  • 34
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. (1974) A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716-723.
    • (1974) IEEE Trans. Autom. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 36
    • 0003807773 scopus 로고    scopus 로고
    • Prentice-Hall, Upper Saddle River, NJ, USA
    • Haykin, S. (1996) Adaptive Filter Theory. Prentice-Hall, Upper Saddle River, NJ, USA.
    • (1996) Adaptive Filter Theory
    • Haykin, S.1
  • 38
    • 66849104300 scopus 로고    scopus 로고
    • Online EM for latent data models
    • Cappe, O. (2009) Online EM for latent data models. J. Roy. Statist. Soc. Ser. B, 71, 593-614.
    • (2009) J. Roy. Statist. Soc. Ser. B. , vol.71 , pp. 593-614
    • Cappe, O.1
  • 41
    • 26444601262 scopus 로고    scopus 로고
    • Cooperative multi-agent learning: The state of the art
    • DOI 10.1007/s10458-005-2631-2
    • Panait, L. and Luke, S. (2005) Cooperative multi-agent learning: The state of the art. Auton. Agents Multi-Agent Syst., 11, 387-434. (Pubitemid 41425094)
    • (2005) Autonomous Agents and Multi-Agent Systems , vol.11 , Issue.3 , pp. 387-434
    • Panait, L.1    Luke, S.2
  • 42
    • 0028667890 scopus 로고
    • Short-term prediction of local wind conditions
    • Landberg, L. and Watson, S. (1994) Short-term prediction of local wind conditions. Bound.-Layer Meteorol., 70, 171-195. (Pubitemid 285186)
    • (1994) Boundary-Layer Meteorology , vol.70 , Issue.1-2 , pp. 171-195
    • Landberg, L.1    Watson, S.J.2
  • 46
    • 51249108949 scopus 로고    scopus 로고
    • Towards real-time information processing of sensor network data using computationally efficient multi-output gaussian processes
    • St Louis, MO, USA, IEEE Computer Society, Washington, DC, USA
    • Osborne, M., Roberts, S., Rogers, A., Ramchurn, S. and Jennings, N. (2008) Towards Real-Time Information Processing of Sensor Network Data Using Computationally Efficient Multi-Output Gaussian Processes. Proc. 7th Int. Conf. Information Processing in Sensor Networks, St Louis, MO, USA, pp. 109-120. IEEE Computer Society, Washington, DC, USA.
    • (2008) Proc. 7th Int. Conf. Information Processing in Sensor Networks , pp. 109-120
    • Osborne, M.1    Roberts, S.2    Rogers, A.3    Ramchurn, S.4    Jennings, N.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.