-
2
-
-
33750293964
-
Bandit based monte-carlo planning
-
Number 4212 in LNCS. Springer
-
L. Kocsis and C. Szepesvári, "Bandit based monte-carlo planning," in In: ECML-06. Number 4212 in LNCS. Springer, 2006, pp. 282-293.
-
(2006)
ECML-06
, pp. 282-293
-
-
Kocsis, L.1
Szepesvári, C.2
-
3
-
-
84899784589
-
Generalized model learning for reinforcement learning in factored domains
-
May
-
T. Hester and P. Stone, "Generalized model learning for reinforcement learning in factored domains," in AAMAS, May 2009.
-
(2009)
AAMAS
-
-
Hester, T.1
Stone, P.2
-
5
-
-
84880854156
-
R-MAX - A general polynomial time algorithm for near-optimal reinforcement learning
-
R. I. Brafman and M. Tennenholtz, "R-MAX - a general polynomial time algorithm for near-optimal reinforcement learning," in IJCAI, 2001, pp. 953-958.
-
(2001)
IJCAI
, pp. 953-958
-
-
Brafman, R.I.1
Tennenholtz, M.2
-
6
-
-
33749242809
-
Learning the structure of factored markov decision processes in reinforcement learning problems
-
New York, NY, USA: ACM
-
T. Degris, O. Sigaud, and P.-H. Wuillemin, "Learning the structure of factored markov decision processes in reinforcement learning problems," in ICML '06. New York, NY, USA: ACM, 2006, pp. 257-264.
-
(2006)
ICML '06
, pp. 257-264
-
-
Degris, T.1
Sigaud, O.2
Wuillemin, P.-H.3
-
7
-
-
33749251297
-
An analytic solution to discrete bayesian reinforcement learning
-
New York, NY, USA: ACM
-
P. Poupart, N. Vlassis, J. Hoey, and K. Regan, "An analytic solution to discrete bayesian reinforcement learning," in ICML '06. New York, NY, USA: ACM, 2006, pp. 697-704.
-
(2006)
ICML '06
, pp. 697-704
-
-
Poupart, P.1
Vlassis, N.2
Hoey, J.3
Regan, K.4
-
8
-
-
14344258433
-
A Bayesian framework for reinforcement learning
-
M. Strens, "A Bayesian framework for reinforcement learning," in ICML '00, 2000, pp. 943-950.
-
(2000)
ICML '00
, pp. 943-950
-
-
Strens, M.1
-
9
-
-
78649507911
-
A bayesian sampling approach to exploration in reinforcement learning
-
J. Asmuth, L. Li, M. L. Littman, A. Nouri, and D. Wingate, "A bayesian sampling approach to exploration in reinforcement learning," in UAI, 2009.
-
(2009)
UAI
-
-
Asmuth, J.1
Li, L.2
Littman, M.L.3
Nouri, A.4
Wingate, D.5
-
10
-
-
34250703734
-
An intrinsic reward mechanism for efficient exploration
-
O. Şimşek and A. G. Barto, "An intrinsic reward mechanism for efficient exploration," in ICML, 2006, pp. 833-840.
-
(2006)
ICML
, pp. 833-840
-
-
Şimşek, O.1
Barto, A.G.2
-
11
-
-
34047267520
-
Intrinsic motivation systems for autonomous mental development
-
P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, "Intrinsic motivation systems for autonomous mental development." IEEE Trans. Evolutionary Computation, vol. 11, no. 2, pp. 265-286, 2007.
-
(2007)
IEEE Trans. Evolutionary Computation
, vol.11
, Issue.2
, pp. 265-286
-
-
Oudeyer, P.-Y.1
Kaplan, F.2
Hafner, V.V.3
-
12
-
-
56449122733
-
Knows what it knows: A framework for self-aware learning
-
L. Li, M. L. Littman, and T. J. Walsh, "Knows what it knows: a framework for self-aware learning," in ICML, 2008, pp. 568-575.
-
(2008)
ICML
, pp. 568-575
-
-
Li, L.1
Littman, M.L.2
Walsh, T.J.3
-
13
-
-
0035478854
-
Random forests
-
L. Breiman, "Random forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
14
-
-
33744584654
-
Induction of decision trees
-
J. R. Quinlan, "Induction of decision trees," Machine Learning, vol. 1, pp. 81-106, 1986.
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
|