-
2
-
-
1942450194
-
-
Technical Report CMU-RI-TR-01-25, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
-
Bagnell, J., Ng, A. Y., & Schneider, J. (2001). Solving uncertain Markov decision problems (Technical Report CMU-RI-TR-01-25). Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.
-
(2001)
Solving uncertain Markov decision problems
-
-
Bagnell, J.1
Ng, A.Y.2
Schneider, J.3
-
3
-
-
0028517062
-
Separating distribution-free and mistake-bound learning models over the Boolean domain
-
Blum, A. (1994). Separating distribution-free and mistake-bound learning models over the Boolean domain. SIAM Journal on Computing, 23, 990-1000.
-
(1994)
SIAM Journal on Computing
, vol.23
, pp. 990-1000
-
-
Blum, A.1
-
4
-
-
0041965975
-
R-MAX - a general polynomial time algorithm for near-optimal reinforcement learning
-
Brafman, R. I., & Tennenholtz, M. (2002). R-MAX - a general polynomial time algorithm for near-optimal reinforcement learning. Journal of Machine Learning Research, 3, 213-231.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 213-231
-
-
Brafman, R.I.1
Tennenholtz, M.2
-
5
-
-
33745738567
-
Worst-case analysis of selective sampling for linear classification
-
Cesa-Bianchi, N., Gentile, C., & Zaniboni, L. (2006). Worst-case analysis of selective sampling for linear classification. Journal of Machine Learning Research, 7, 1205-1230.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1205-1230
-
-
Cesa-Bianchi, N.1
Gentile, C.2
Zaniboni, L.3
-
6
-
-
20544462399
-
Minimizing regret with label efficient prediction
-
Cesa-Bianchi, N., Lugosi, G., & Stoltz, G. (2005). Minimizing regret with label efficient prediction. IEEE Transactions on Information Theory, 51, 2152-2162.
-
(2005)
IEEE Transactions on Information Theory
, vol.51
, pp. 2152-2162
-
-
Cesa-Bianchi, N.1
Lugosi, G.2
Stoltz, G.3
-
7
-
-
0028424239
-
Improving generalization with active learning
-
Cohn, D. A., Atlas, L., & Ladner, R. E. (1994). Improving generalization with active learning. Machine Learning, 15, 201-221.
-
(1994)
Machine Learning
, vol.15
, pp. 201-221
-
-
Cohn, D.A.1
Atlas, L.2
Ladner, R.E.3
-
9
-
-
0030643068
-
Using and combining predictors that specialize
-
Freund, Y., Schapire, R. E., Singer, Y., & Warmuth, M. K. (1997). Using and combining predictors that specialize. STOC '97: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing (pp. 334-343).
-
(1997)
STOC '97: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing
, pp. 334-343
-
-
Freund, Y.1
Schapire, R.E.2
Singer, Y.3
Warmuth, M.K.4
-
10
-
-
0034666805
-
Apple tasting
-
Helmbold, D. P., Littlestone, N., & Long, P. M. (2000). Apple tasting. Information and Computation, 161, 85-139.
-
(2000)
Information and Computation
, vol.161
, pp. 85-139
-
-
Helmbold, D.P.1
Littlestone, N.2
Long, P.M.3
-
12
-
-
23244466805
-
-
Doctoral dissertation, Gatsby Computational Neuroscience Unit, University College London
-
Kakade, S. M. (2003). On the sample complexity of reinforcement learning. Doctoral dissertation, Gatsby Computational Neuroscience Unit, University College London.
-
(2003)
On the sample complexity of reinforcement learning
-
-
Kakade, S.M.1
-
14
-
-
0036832954
-
Near-optimal reinforcement learning in polynomial time
-
Kearns, M. J., & Singh, S. P. (2002). Near-optimal reinforcement learning in polynomial time. Machine Learning, 49, 209-232.
-
(2002)
Machine Learning
, vol.49
, pp. 209-232
-
-
Kearns, M.J.1
Singh, S.P.2
-
15
-
-
0037400054
-
An empirical study of two approaches to sequence learning for anomaly detection
-
Lane, T., & Brodley, C. E. (2003). An empirical study of two approaches to sequence learning for anomaly detection. Machine Learning, 51, 73-107.
-
(2003)
Machine Learning
, vol.51
, pp. 73-107
-
-
Lane, T.1
Brodley, C.E.2
-
16
-
-
34250091945
-
Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
-
Littlestone, N. (1987). Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2, 285-318.
-
(1987)
Machine Learning
, vol.2
, pp. 285-318
-
-
Littlestone, N.1
-
19
-
-
33749242078
-
Experience-efficient learning in associative bandit problems
-
Strehl, A. L., Mesterharm, C., Littman, M. L., & Hirsh, H. (2006). Experience-efficient learning in associative bandit problems. Proceedings of the Twenty-third International Conference on Machine Learning (ICML-06).
-
(2006)
Proceedings of the Twenty-third International Conference on Machine Learning (ICML-06)
-
-
Strehl, A.L.1
Mesterharm, C.2
Littman, M.L.3
Hirsh, H.4
-
20
-
-
0021518106
-
A theory of the learnable
-
Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134-1142.
-
(1984)
Communications of the ACM
, vol.27
, pp. 1134-1142
-
-
Valiant, L.G.1
-
21
-
-
49549125826
-
Maximizing classifier utility when training data is costly
-
Weiss, G. M., & Tian, Y. (2006). Maximizing classifier utility when training data is costly. SIGKDD Explorations, 8, 31-38.
-
(2006)
SIGKDD Explorations
, vol.8
, pp. 31-38
-
-
Weiss, G.M.1
Tian, Y.2
|